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Kurzfassung

Verschlüsselte Kommunikation ist ein Muss im Internet, die neuen Protokolle SPDY und
HTTP/2 verpflichten quasi sogar dazu. Eine wichtige Frage die bleibt, ist, wie stark die
Verschlüsselung sich auf die Leistung der Webkommunikation auswirkt. Vor etwas mehr als
zehn Jahren variierte der Mehraufwand für den Einsatz von Transport Layer Security (TLS)
zwischen einem Faktor von 3,5 und 9 gegenüber einer unverschlüsselten Kommunikation.
Die Anforderungen an verschlüsselte Kommunikation sind in den letzten Jahren stark
angestiegen und sehr viele Verfahren haben sich als unsicher und problematisch erwiesen.

Schlüssellängen sind angewachsen und aufwendigere Verfahren kommen zum Einsatz
für den Schlüsselaustausch. Es stellt sich somit die Frage ob schnellere Hardware, Webser-
ver, Algorithmen und Implementierungen – wie damals angenommen – den Mehraufwand
verschwindend gering machen, oder gegenwärtige Technologien nicht mit den erhöhten
Anforderungen mithalten können. Dies wird anhand von einer umfangreichen Leistungs-
messung evaluiert. Dabei soll im Besonderen der tatsächliche Einfluss von TLS ermittelt
werden.

Schlagwörter:
Leistung, Sicherheit, Webserver, WWW, Internet, TLS, SSL
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Abstract

Encrypted communication is a must in the Internet, the new protocols SPDY and HTTP/2
quasi oblige it. An important question that remains is how strong the encryption affects the
performance of the web communication. Little more than a decade ago, the overhead for
the usage of Transport Layer Security (TLS) varied between a factor of 3.5 and 9 compared
to an unencrypted communication. The requirements for encrypted communications have
increased in recent years, and many algorithms have proven to be insecure and problematic.

Key lengths have grown, and more elaborate methods are necessary for key exchange.
The question arises whether faster hardware, web servers, algorithms and implementations

—as assumed back then—can make the overhead negligible, or if current technology is not
able to keep up with the elevated requirements. This will be evaluated on the basis of
extensive performance tests. Special focus lies on determining the actual influence of TLS.

Keywords:
Performance, Security, Web Server, WWW, Internet, TLS, SSL
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1 INTRODUCTION 1

1 Introduction

Performance and security are both crucial parts of any application. But a secure operation
comes with additional costs. A simple example would be a safe compared with a wallet.
The safe has high security, but it takes a long time to get the money. The wallet has
little security, but it takes a short time to get the money. This effect is true for almost
every operation. The problem is that most web applications cannot afford long processing
times.

Research suggests that website performance is the most important key factor for users
(Podjarny 2010; Everts 2014). One result of this user preference is that most web servers
are still configured to handle connections over insecure communication channels under
the pretext of efficiency arguments. Only 0.5 %1 of all websites were offering encrypted
transactions in 2013, and the HTTP Archive statistic reports that 16 % of all websites
they observed during their elicitation in May 2015 were performed over a secured channel
(HTTP Archive 2015). However, the world at large knows by now that security is very
important in the World Wide Web (WWW) for various reasons.

In the past, the topic of security was ignored by the public, despite the fact that devel-
opers, hackers, and organizations were appealing urgently to improve security (Sebayang
2013; EFF 2011). This changed in the year 2013 when the mass media started to report
on the National Security Agency (NSA) leakages made public by Edward Snowden (Gidda
2013). Many espionage activities from various intelligence agencies around the world are
now being revealed at a constant rate (Holland 2014), and at the same time cybercrime
is increasing (Brandt 2014).

Transport Layer Security (TLS) was specifically designed to provide secure commu-
nication over an insecure infrastructure, and, thus, to prevent eavesdropping and other
inadvertent actions (Ristić 2014, 1). But, for the above reasons, broad deployment—
let alone full encryption—of the WWW is still far away. Hence, users and servers are
vulnerable to simple attacks by authorities and criminals alike. Hopefully, this aggravation
will change in the near future.

Full encryption will become de facto mandatory with the new Hypertext Transfer
Protocol 2 (HTTP/2) since major browsers, like Firefox from the Mozilla Foundation
(Mozilla) and Chrome from Google Incorporation (Google), are not going to support clear,
or unencrypted, communication (McManus and Hurley 2014; Chan 2014). In fact, Mozilla

1. Estimation based on (Durumeric et al. 2013, 4) and (Netcraft 2013) for all available IPv4 addresses
connected to the Internet; excluding SNI enabled hosts.
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even plans to deprecate any non-secure communication (Barnes 2015). Google expressed
similar plans on various occasions, and wants to start displaying warnings for non-secured
origins (Google, Inc. 2014).

Google already deployed their experimental HTTP/2 precursor protocol SPDY (pro-
nounced “speedy”) with mandatory encryption. Their decision to use secured communi-
cation channels for this protocol was initially based on compatibility issues with existing
intermediaries (Google, Inc. 2009; Grigorik 2013a, 53; Wang et al. 2014, 389). Such inter-
mediary nodes along a communication path may drop messages because of an unknown
formatting, or alter and subsequently cripple the messages to a point at which they are
unusable. Encrypted messages, on the contrary, are unreadable for intermediaries by
definition, and alterations are impossible.

Encryption allowed Google the easy deployment of a new protocol within the existing
infrastructure of the WWW and the performance of various live tests. However, additional
cryptographic processing is necessary. There are many more things that get incapacitated
or are harder to achieve if encryption is involved. This is the reason why the HTTPbis
working group’s discussion regarding mandatory TLS usage in HTTP/2 lead to no con-
sensus (Stenberg 2015). Further, there are many other points in the new protocol that
are criticized by various parties; a comprehensive list was compiled by (Kamp 2015).

To strengthen the encryption of the future an update to the TLS standard in form of
version 1.3 is underway as well (Rescorla 2015b). The TLS working group’s objectives are
to improve security and performance. The re-evaluated text shall remove ambiguity, and
introduce new, stronger cipher suites while prohibiting usage of insecure ones. All of these
goals shall be reached with maximum backward compatibility. Thus, the minimization
of the processing times involved in establishing a secure channel will only be achieved
through optimizing, removing, or moving of certain components.

(Coarfa, Druschel, and Wallach 2002, 11) concluded in their research that TLS over-
head will diminish with increasing central processing unit (CPU) performance, and that
research should focus on more efficient web servers and the TLS connection setup phase.
Nowadays, CPUs are significantly faster and feature multi-core architectures, protocols
are finally evolving again addressing round-trip time (RTT) issues, and new web servers
plus operating system (OS) kernels are available addressing the connection setup phase
problems. If the conclusion of Coarfa, Druschel, and Wallach holds true after nearly
twelve years, and if industry and research are on the right track to reach these goals, is
unacknowledged.
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The research question of this thesis is, therefore: Does it hold true that new, optimized
algorithms and their implementations as well as faster computers reduce the overhead
of encryption to such a great extent that there is hardly a difference to unencrypted
communication?

1.1 Contribution

The primary focus of this thesis lies on evaluating the status quo and impending develop-
ment of TLS with emphasis on performance. The contribution of this work to the field of
research can be split up into three parts:

• Chronicle of Internet encryption and security development with attention to perfor-
mance. This includes existing and upcoming technologies—protocols and standards

—that improved and should improve speed.
• Theoretical and practical evaluation of the impact that encryption has on web

communication through the development of a benchmarking plan based on existing
and widely deployed technologies. The main question of this thesis will be answered
through statistical analysis of the test results.

• Development of a program for key rotation that can be used together with a web
server for de- and encryption of session tickets. This small program helps to improve
both security and performance of one or more web servers.

1.2 Outline

Following this introduction is the methods section, which is devoted to related technologies
as well as academic and non-academic research. The methods are important to locate and
understand the role of encryption within web applications and its performance impact.
Subsequent subsections deal with the internet protocol suite (IPS) layers in ascending
order. A brief guide to cryptography follows as an introduction to the following subsections
that take a closer look at the TLS ecosystem. Current as well as historic work of other
researchers on the main topic of this thesis are discussed in the last subsection of methods.

The results section follows, which is dedicated to the presentation and discussion
of the work that was performed as part of this thesis. The outcome will answer the
research question. The first subsection is going to show the setup for the tests that is used,
followed by a purposeful explanation of the HTTP Archive (HAR) file format. A statistical
analysis of the collected test data is performed in the subsequent passage followed by the
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last subsection which documents the development of a program for TLS session ticket key
rotation.

The final and last section of this work is dedicated to the discussion of the performed
work and an outlook for possible future extensions based on it.

1.3 Preliminary Remarks

This work is licensed under the Creative Commons Attribution-NonCommercial-Share-
Alike 4.0 International License. To view a copy of this license, see appendix C. Additional
terms may apply for figures, please refer to the license and copyright information that is
additionally stated in the figure’s captions.

All mathematical equations are following the same style by using only lowercase letters
for variables and uppercase letters for sets. Names for mathematical variables are kept
consistent throughout this work; see section 4 for reference purposes.
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2 Methods

This section clarifies the fundamentals of underlying technologies in necessary detail. This
knowledge is required in order to evaluate what problems new protocols and standards try
to solve. Each subsection, therefore, includes a brief chronology of previous developments
in which problems in regard to performance are highlighted.

Section 2.1 is a terse breakdown of limitations that are imposed by physics on computer
networking, which in further consequence influence the speed of the Internet. The following
section 2.2 gives a brief introduction to the IPS by clarifying which role the Internet
Protocol (IP) and Transmission Control Protocol (TCP) play. Going further up the
stack, HTTP follows, it builds the core of almost all web services and is of outermost
importance for performance. A brief primer to cryptography is given before continuing
with TLS. A chronology of the protocol’s evolution concerning performance and security
where applicable is given. The following section takes a detour by identifying TLS related
technologies that are important for the encrypted ecosystem. The very last section dissects
previous work on the subject, and builds the fundamental for the next part of the thesis.

2.1 Physical Limitations and Networking Primer

Various key figures directly impact the speed of any computer network and determine
its performance (Cermak 2005). It is desirable for a web application that all of these
measures are at their optimum for fast delivery.

• Latency is the time a packet takes from the sender to the receiver.
• Jitter is the variation in latency of packets over time.
• Error rate is the percentage of incorrectly transmitted bits.
• Bandwidth is the maximum throughput of a communication channel.
• Throughput is the total of packets successfully delivered.

The two most important key factors to understand in the context of a fast web
application are latency and throughput/bandwidth because they can be directly influenced
(Grigorik 2013a, 3). All other measures are dependent on the communication channel and
hard to govern, especially in a huge network like the Internet. Of course, the latency and
throughput/bandwidth can only be influenced on the controlled side (usually the server),
and the other party’s values will vary depending on various factors that are out of control
for administrators and developers of websites.
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2.1.1 Latency

Packets, which are sent over an internet2, traverse multiple nodes and suffer from several
types of delays at each node during that progress. This effect is known as latency, an
inevitable principle of any network. The most significant delays are nodal processing,
queuing, transmission, and propagation. Their sum gives the total nodal delay (dnodal),
and, thus, the latency of a communication path (Grigorik 2013a, 4–5; Kurose and Ross
2013, 35–47). The following paragraphs give further details about each delay, and are
arranged according to their occurrence.

Nodal processing delay dproc is the amount of time required to examine a packet’s
header. Bit-level error checks are usually performed by routers and the next destination
for the packet to reach its receiver is determined. A router’s processing time is typically
within microseconds but may add up to milliseconds if complex payload modifications
(namely network address translation (NAT) or deep packet inspection (DPI)) have to be
performed (Ramaswamy, Weng, and Wolf 2004, 1630, Table I).

Queuing delay dqueue is the amount of time a packet is waiting before it can be
transmitted onto the link. This delay usually occurs at routers, switches, and statistical
multiplexers. Such a devices can only reconsign a single packet at a time, hence, placing
all other incoming packets in a queue (buffer). Therefore, this delay may approach infinity
if the rate of incoming packets exceeds that of outgoing ones. It follows that the link is
now congested because the device only has a finite amount of buffer available to stack the
incoming packets (Ramaswamy, Weng, and Wolf 2004, 1630, Table I; Kurose and Ross
2013, 41, Figure 1.18).

The congestion problem is illustrated in figure 1 with a 1 Gbit/s switch and three
attached computers. Computer A and B continuously send 1 Gbit/s to computer C,
thus, exceeding the switch’s queue and congesting the link (Comer 2014, 30–31). The
communication path is subsequently going to suffer from packet loss, which might trigger
a domino effect because lost packets are eventually retransmitted by the sender. This
means in effect that the sender will consequently send even more packets than before the
packet loss was experienced. This effect is called congestion collapse. The TCP provides
special algorithms to keep this issue as small as possible; see section 2.2.4 for more details
(RFC 896, Nagle 1984).

2. An internet—note the lower-case i—is an amalgamation of networks through gateways, and short for
internetworking, which derives from inter (between) and networking. A famous example for an internet
besides the Internet would be the Advanced Research Projects Agency network (ARPANET), which is
now a subnet of the Internet.
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Figure 1: Switch with three computers attached, and arrows that indicate in which direction
the streams move (Fussenegger 2014e; Kurose and Ross 2013, 36, Figure 1.16).

Transmission delay dtrans is the amount of time necessary to push (transmit) all of the
packet’s bits into the link. Packet-switched networks are commonly transmitting in a first-
come-first-serve manner, meaning that a packet can only be transmitted when all other
received packets have already been transmitted. The formula to calculate the transmission
delay is defined as (Kurose and Ross 2013, 37):

dtrans = l/r (2.1)

With l denoting the length of the packet in bit, and r the transmission rate in bit/s.
As a result, if the same 100 Mbit file is to be transfered over a 100 Mbit/s and a 10 Gbit/s
link, then it takes 1 s to push the file on the former link and only 10 ms on the latter
(Grigorik 2013a, 5).

Propagation delay dprop is the amount of time it takes for a signal’s head to travel from
the sender to the receiver. This value is derived from the distance between sender and
receiver, and the medium that is used to transport the signal. The speed of the signal
is dictated by the universal physical constant of the speed of light c. How fast light can
travel depends on the medium it has to go through. This can be calculated by the index
of refraction n, which is a dimensionless ratio that depicts “the apparent phase velocity of
the transmitted beam from its nominal value of c” (Hecht 2002, 92, 4.2.3). The formula
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to calculate the refractive index is, therefore, defined as:

n = c/v (2.2)

vFOC = 299,792,458 m/s
1.5 = 199,861,638.666,667 m/s ≈ 200 Mm/s (2.3)

The n of a vacuum is one (by definition) and, thus, light will travel through it at the
exact speed of 299,792,458 m/s (nominal value). The typical n of fiber optic cables (FOCs)
is between 1.34 and 1.54 or worse, depending on the quality and the question whether the
index refers to the core or the cladding (Ishigure, Nihei, and Koike 1996, 2049; Hecht 2002,
194). It is, therefore, safe to use a value of ∼1.5 for estimations, like in equation (2.3),
which results in a speed v of ∼200 Mm/s for an average FOC, and allows the calculation
of the actual propagation delay (Grigorik 2013a, 6):

dprop = s/cm (2.4)

dprop = 6,800 km
200,000 km/s × 1,000 = 34 ms (2.5)

With s denoting the distance traveled, and cm the speed of light in the medium
(propagation speed). This results in a dprop of 34 ms between New York City (United
States) and Graz (Austria)3 or a RTT of 68 ms through a direct FOC connection. Even
in a vacuum the RTT would still take up to ∼46 ms without any of the other delay
components considered, see equation equation (2.5). Since there is no direct connection
and several nodes are between both locations, a real ping results in a RTT of ∼200 ms.4

In other words, the dnodal is ∼100 ms after all aforementioned delays are aggregated.
While 200 ms does not sound like much, research suggests that a 300 ms delay is already

perceived by the user, and that there is a 1 s to 2 s barrier of maximum acceptable response
time for systems, after which a user will perform a mental context switch (Grigorik 2013a,
7; Seow 2008, 40–45; Nah 2004; Shneiderman 1984; Miller 1968). The speed of signals in
copper or twisted-pair cables is often slower because they are “subject to higher signal

3. The distance information was taken from http://www.entfernungsrechner.net/ and Graz was chosen
because the author owns a server in that city with a gigabit uplink.

4. The ping was executed with http://startping.com/city/NewYork to https://www.movlib.org/
(Graz).

http://www.entfernungsrechner.net/
http://startping.com/city/NewYork
https://www.movlib.org/
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loss, and electromagnetic interference” (Grigorik 2013a, 9). However, telecommunication
corporations around the world are eventually transitioning to optical fiber everywhere,
including fiber to the home (FTTH) (Sawall 2014; OECD 2008; Hecht 2002, 196).

This upgrade will have a significant impact on user performance since the most sub-
stantial loss of time for routing packets predominates at the user’s side—the well known
last kilometer or mile. This last kilometer adds between 5 ms to 40 ms, and accounts
for 40 % to 80 % of the whole incurred latency. This is because local Internet service
providers (ISPs) have to deploy the cables through many households and aggregate the
signal, which is then forwarded to the local routing node. From this point on, the packets
travel through high-speed cables and routers until they reach the web server, which is
usually also situated in a high-speed data center (Sundaresan et al. 2011, 142; Canadi,
Barford, and Sommers 2012, 284).

2.1.2 Throughput

Another critical key factor in computer networks, besides latency, is end-to-end throughput.
The instantaneous throughput,for example, is displayed in peer-to-peer (P2P) software
while downloading a large file; it describes the rate at which the packets are received at
any given point in time measured in bit/s. The average throughput r is made up of the
total bit count x that was transferred, and the time t it took to transfer the file (Kurose
and Ross 2013, 44). The formula is, therefore, simple:

r = x/t (2.6)

Certain Internet applications require a minimum throughput to work correctly, such as
Web Real-Time Communication (WebRTC) audio requiring between 6 kbit/s to 510 kbit/s,
and WebRTC video requiring 100 kbit/s to 2,000 kbit/s or more depending on the quality
(Grigorik 2013a, 314–15). File transfers do not have minimum requirements, but small
throughput will result in long download times. Mike Belshe from Google shows that the
benefit of increasing maximum throughput (bandwidth) on the client side is approaching
zero at around 8 Mbit/s, and that latency (RTTs) is more important for fast web appli-
cations than it might be for other Internet applications (Belshe 2010; Grigorik 2013a,
176–78).
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Rank Country/Region Average Mbit/s

– Global 4.5
1 South Korea 22.2
2 Hong Kong 16.8
3 Japan 15.2
4 Sweden 14.6
5 Switzerland 14.5
6 Netherlands 14.2
7 Latvia 13.0
8 Ireland 12.7
9 Czech Republic 12.3

10 Finland 12.1

Rank Country/Region Peak Mbit/s

– Global 26.9
1 Hong Kong 87.7
2 Singapore 84.0
3 South Korea 75.4
4 Japan 69.0
5 Romania 67.0
6 Taiwan 64.2
7 Uruguay 63.3
8 Qatar 62.8
9 Israel 60.5

10 Latvia 60.2

Table 1: Average and maximum throughput, as observed from Akamai Technologies’ content
delivery network (CDN), globally and for the top ten countries and regions of the
world (Belson 2014, 20, Figure 11–12)

Table 1 shows the average and maximum client throughput compiled by Akamai
Technologies for various regions of this world. Most users already have enough throughput
with a global average of 4.5 Mbit/s for high-speed web browsing if the observations of
(Belshe 2010, 3) are used as a benchmark. But the situation, of course, is different for web
servers: they usually should simultaneously serve content to as many clients as possible
while still enabling all of them to utilize their throughput efficiently.

urmax = rbl/u (2.7)

The bandwidth for each of u clients connecting to a server over a network is dictated
by the throughput of the bottleneck link rbl. Each client will typically have the same
maximum throughput if fair queuing (RFC 970, Nagle 1985) with best-effort delivery is
in use; see equation (2.7). Since the Internet core is sufficiently “over-provisioned with
high speed links that experience little congestion” (Kurose and Ross 2013, 45), only two
nodes can be the bottleneck: the client or the server.

2.1.3 Quality of Service

Quality of service (QoS) refers to the overall performance of all components of the preceding
sections and networks in general. Packet switched networks—like any internet and the
Internet—are based on best-effort delivery and, thus, guarantee no QoS whatsoever. This
means that bit rates and delivery times are unspecified and depending on other network
participants. But a minimum amount of QoS might be preferable for high throughput
applications, like audio and video streaming or even file downloads (Comer 2014, 549).
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Such a QoS system would have to guarantee that all network participants have the
same characteristics at all times. It means in effect that if both computers A and B in
figure 1 want to send a 1 Mbit/s stream to computer C over the 1.5 Mbit/s link, one of
A and B would have to be declined by the switch. Otherwise, it would be impossible to
satisfy the QoS of any of the participants; in fact, this is exactly what is done in telephone
networks (Kurose and Ross 2013, 654).

When a network has sufficient resources for all traffic, QoS constraints are unnec-
essary; when traffic exceeds network capacity, no QoS system can satisfy all users’
demands.

— (Comer 2014, 550)

A lot of research went into this field of study, and even standards like Asynchronous
Transfer Mode (ATM) were developed, but nothing found broad deployment (Comer 2014,
549–56; Kurose and Ross 2013, 636–55). Instead, most ISPs use traffic shaping for rate
limiting. The scheduling (outgoing data) and policing (incoming data) in use highly varies
from ISP to ISP (Sundaresan et al. 2011, 144). The same might be true for some Internet
hosting services (IHSs), and it is, therefore, important to read the terms of service (ToS)
or ask how traffic is distributed among multiple servers.

Encrypted traffic, like TLS, is by definition unreadable for QoS implementations,
and, thus, unclassifiable for the algorithms that try to automatically apply rules. How
ISPs handle these situations is unclear, but throttling all encrypted traffic is reasonably
hazardous because most top5 and e-commerce websites use TLS to secure their users and
applications. As a result, some parties demand that users of certain encrypted traffic
from services like virtual private networks (VPNs) who use a lot of bandwidth should be
considered harmful or even criminal (Andy 2014).

2.2 Internet Core Networking

The core of the Internet is, above all, driven by the IP and the TCP, which were first
proposed by (Cerf and Kahn 1974). Other protocols exist, but none reached the same
importance as those two, which becomes exemplified by the fact that the internet protocol
suite (IPS) is commonly referred to as TCP/IP. Many changes were proposed and made to
the core protocols since the first version from 1974, but they are essentially still operating
in the same manner today (Grigorik 2013a, 13).

5. Referring to the “Alexa Internet Top Sites” at http://www.alexa.com/topsites.

http://www.alexa.com/topsites
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However, the User Datagram Protocol (UDP) is getting more attention nowadays due
to its low overhead for high bandwidth applications. This is the reason why, for example,
WebRTC was standardized for UDP only. Google is experimenting with a complete
replacement for TCP called Quick UDP Internet Connections (QUIC; Roskind 2013), and
plans to submit it to the Internet Engineering Task Force (IETF) in the near future (Wilk,
Hamilton, and Swett 2015). They are not the first to do so but might have the leverage
to actually push it through, like they did with SPDY, which resulted in HTTP/2.

The IPS is often compared with the Open Systems Interconnection model (OSI model)
but only defines four layers in contrast to the seven layers of the conceptual OSI model
(Comer 2014, 50). The link layer is the lowest and does not describe any physical standards,
instead, a functioning network infrastructure is simply assumed and not discussed in
RFC 1122 or RFC 1123 (Braden 1989b, 1989a)6. Instead, the link layer standard merely
describes protocols that act only on the link (local network segment) the host is connected
to, also, only physical addresses7 are used, and nothing is routed to outside networks
(Comer 2014, 62–63; Kurose and Ross 2013, 49–53).

This is where the internet layer with IP and the transport layer with TCP take over
followed by the application layer, which is also the last. The most important protocols
of these layers are discussed in subsequent sections 2.3 to 2.5. There are numerous other
protocols that assist to drive the Internet core. For instance, the Domain Name System
(DNS) or the Border Gateway Protocol (BGP) that support participants to find each other
in networks. Both of these protocols are insecure, manipulable, and can be used to bypass
encryption by rerouting the traffic (Ristić 2014, 18–22). A very famous BGP incident, for
instance, involved a Pakistani ISP that accidentally hijacked all YouTube traffic (Antony
et al. 2008). Hence, both protocols are subject of past and ongoing research and new
extensions, which use cryptography and other measures to secure them.

There are many more non-core network protocols that are commonly used in OSs, and
might be misused to circumvent security measures as well. A recent attack involved such
a protocol, the Network Time Protocol (NTP), to bypass HTTP Strict Transport Security
(HSTS, see section 2.6.2) and perform a so called Secure Socket Layer (SSL) stripping
attack. Essentially, this means that the time of the victim’s computer was changed to a
time far in the future to skirt encryption, and force the victim to visit an unencrypted
network resource (Selvi 2014). Bypassing encryption to execute attacks is typical because

6. The lack of physical standards often tempts authors to add additional layers to the IPS, like seen in
(Comer 2014, 53; Kurose and Ross 2013, 50).

7. Hardware media access control (MAC) addresses, not to be confused with message authentication
code, which has the same abbreviation but is used in the context of cryptography.
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it is harder to break underlying encryption than to simply remove it entirely (Ristić 2014,
151).

2.2.1 TCP/IP

IP provides the ability to route and address datagrams (packets) through gateways across
network boundaries. Currently, two IP standards are deployed, namely version 4 (IPv4)
and 6 (IPv6)8. TCP provides a reliable packet delivery over an unreliable communica-
tion channel. This means that it ensures “retransmission of lost data, in-order delivery,
congestion control and avoidance, data integrity and more” (Grigorik 2013a, 13). The
main focus of the protocol lies not on fast but on accurate delivery. Besides that, both
protocols do not provide any security measurements, and allow any network participant,
who has access to the link, to intercept and manipulate the data on the wire (Grigorik
2013a, 13; Ristić 2014, 2).

Transmission of the data and efficient division of it into segments to avoid network
delays is what TCP is responsible for. Those segments are handed over to the IP interface,
where each is wrapped in an IP packet and forwarded to the link interface, where it starts
its way to the designated receiver. But TCP has to ensure that a communication with the
desired receiver is actually possible before starting the transmission. Otherwise, it would
be impossible to determine if all data will be reliably received. TCP uses a three-way
handshake (3WHS) to achieve this.

Figure 2 illustrates TCPs 3WHS, where the client initially has to request a connection
(SYN) from the server; this will take 34 ms, which is the delay that was previously calculated
in section 2.1.1 from New York to Graz over a hypothetical direct FOC connection. The
server will acknowledge the connection request (SYN-ACK) if it is listening on the port the
connection request is sent to, and if connections are allowed. This adds another 34 ms
only to send the acknowledgment back. From there on, sender and receiver are able to
exchange application data (ACK), like downloading an image.

This whole process results in a significant overhead for establishing new TCP con-
nections. Various researchers tried to propose a system to shorten this process, but the
problem of further decreased security draws most attempts impractical. The most notable
of these attempts was RFC 1644 (Braden 1994). (Radhakrishnan et al. 2011) were the
first to introduce a system—called TCP Fast Open (TFO)—that works for recurring con-

8. IPv6 was developed by the IETF because of the long foreseen IPv4 address exhaustion. Deployment
of the new standard is still slow despite many efforts of various parties, like the Internet Society (ISoc)
with their http://www.worldipv6launch.org/ campaign.

http://www.worldipv6launch.org/
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Figure 2: Simplified illustration of the TCP 3WHS with timing information from the example
calculation in section 2.1.1 (Fussenegger 2014a).

nections by setting a cryptographic HTTP cookie without introducing new attack vectors.
TFO proved to be very effective for subsequent connections over channels with high RTTs
ranging from 5 % to 40 % in average for the whole page load time (PLT). This effect is
less distinct with low RTTs (Radhakrishnan et al. 2011, 9, Table 1).

Currently TFO is only supported on Linux OSs starting from kernel version 3.79 for
servers, enabled by default since version 3.1310, and with IPv6 support since version 3.1611.
Google’s Chrome and Chromium browsers are currently the only user agents (UAs) that
support the experimental RFC 7413 on Linux OSs (including ChromeOS and Android;
Chan 2013a; Cheng et al. 2014). Nginx support is available since version 1.5.8 via the
optional parameter fastopen to the listen directive.12 It is not clear if the upcoming
Microsoft Corporation (Microsoft) Windows OS or any of the future Apple Incorporation
(Apple) OSs will implement this feature.

2.2.2 Flow Control

TCP—in contrast to UDP and other protocols—implements an end-to-end sliding window
flow control mechanism, which ensures that the sender is not going to overwhelm the

9. http://kernelnewbies.org/Linux_3.7
10. http://kernelnewbies.org/Linux_3.13
11. http://kernelnewbies.org/Linux_3.16
12. http://nginx.org/en/docs/http/ngx_http_core_module.html#listen

http://kernelnewbies.org/Linux_3.7#head-cd32b65674184083465d349ad6d772c828fbbd8b
http://kernelnewbies.org/Linux_3.13#head-159ff61ea3acfd67b88855e75dbbb140f8825c4a
http://kernelnewbies.org/Linux_3.16#head-93fbb9abc6149e9c3055322f27cdc3a8fcc198e6
http://nginx.org/en/docs/http/ngx_http_core_module.html#listen
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receiver with too much data, thus, overflowing its network buffers. No other approach
is possible since the internet layer with its IP does not provide any feedback regarding
the current state of network congestion (Kurose and Ross 2013, 266). Each side of the
communication has to include a receive window (rwnd)13 value during the initial 3WHS
and in subsequent ACK packets. During the inital handshake the initial receive window
(init_rwnd) is set to the OS’s default value, which highly varies between vendors, as
illustrated in table 2.

OS % > 15 kB rwnd

FreeBSD 91 % 51 kB
iPhone 66 % 87 kB
Linux 6 % 10 kB
Mac 93 % 270 kB
Windows 7 88 % 41 kB

Table 2: Advertised init_rwnd values of first HTTP request; the OS was extracted from the
HTTP UA header line (Dukkipati et al. 2010, 29, Table 2).

The rwnd variable indicates how much data the receiver’s buffer is able to hold, and
can be adjusted at any time to account for buffer fill level changes. A value of zero has
a special connotation and signals the sender that it should stop emitting data because
the receiver’s buffer is full and no more data can be processed at this time. The rwnd
may become a bottleneck in various situations. For instance, for clients downloading
or streaming resources from a server the rwnd might be too small and, therefore, never
reaches the maximum throughput.

On the other hand, if a client is uploading a resource to the server, the server’s rwnd
might become the bottleneck, although it most certainly has a very fast link and sufficient
resources to handle the incoming data. But the server might not be able to advertise its
rwnd to the client because the field within the TCP’s packet is limited to a maximum value
of 65,535 B. This creates a hard limit for applications, and is highly problematic in cases
when a long fat network (LFN, pronounced “elephan”) is in use. A LFN is a network with
a bandwidth-delay product (BDP) that significantly exceeds 105 bit (RFC 1072, Jacobson
and Braden 1988, 1); a definition that essentially applies to most broadband technologies
in use today if the RTT is not very low.

b × dnodal = (10.4 × 106 bit/s) × (100 × 10−3 s) = 1,040,000 bit (2.8)

13. Sometimes abbreviated as rwin in older documents.
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rwndmin = 9.8 × 106 bit/s
8 × 1024 × 0.1 s = 119.629 KiB (2.9)

The average throughput in Austria is 9.8 Mbit/s (and only 26 % of all inhabitants are
over 10 Mbit/s, values according to Belson 2014, 42, Figure 31, 43, Figure 33), while a
realistic RTT would be 100 ms. This results in a BDP of ∼106 bit; see equation (2.8). As a
consequence, the minimum rwnd has to be ∼120 KiB to utilize the link’s full throughput;
see equation (2.9). This is why RFC 1323 introduced the window scale option, which
raises the rwnd’s TCP field’s hard upper limit to 1 GB (Jacobson, Braden, and Borman
1992, 8–11). This option is active on all modern OSs. Listing 1 illustrates how this value
can be printed and changed on a Linux OS (Grigorik 2013a, 18–19, 28–30).

1 sysctl -- 'net.ipv4.tcp_window_scaling' # print
2 sysctl --write -- 'net.ipv4.tcp_window_scaling'=1 # set

Listing 1: Printing and setting the TCP window scaling option.

One should not simply raise the init_rwnd’s value to increase throughput as it might
have negative consequences in some situations. But (Dukkipati et al. 2010) displayed in
their study that it is safe to increase the init_rwnd multiplier to at least ten. This will, in
turn, allow participants to reach a higher throughput. Nonetheless, the greatest challenge
for a heterogeneous network, like the Internet, is the communication through gateways
and other intermediaries of unknown configuration that lie beyond its network boundaries,
and are not taken into account by the flow control.

While flow control ensures that the receiver is not overwhelmed, it does not consider
the involved intermediaries, which might be unable to cope, along the communication
path. The throughput needs to be steadily adjusted to a constantly fluctuating network
environment. (Jacobson and Karels 1988) were the first to introduce a solution to this
problem in their work “Congestion Avoidance and Control”. They proposed various new
algorithms, whose most important aspects are discussed in the following sections (Kurose
and Ross 2013, 269–72; Grigorik 2013a, 16–30; Comer 2014, 223–25).

2.2.3 Slow-Start

Slow-start (Jacobson and Karels 1988, 2–5)14 extends on the flow control idea by introduc-
ing the congestion window (cwnd) variable. It is used on the sender’s side to determine

14. Similar approaches to the problem were independently proposed by other researchers, for instance
(Jain 1986), since it was a well known problem, as can be seen in (RFC 896, Nagle 1984, 1–3).
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how much unacknowledged data can be in flight to the receiver before it must stop sending
and wait for an acknowledgment (ACK). The cwnd value is—unlike the rwnd value—not
advertised to the counterside. Each side maintains its own value, which is initialized with
a system-specific value. Adjustments to this private variable are done in accordance with
a simple rule: “the maximum amount of data in flight (not ACKed) between client and the
server is the minimum of the rwnd and cwnd variables” (Grigorik 2013a, 20).

Figure 3: Illustration of TCP’s slow-start and congestion avoidance (Fussenegger 2014b;
Inacon GmbH 2010).

Figure 3 depicts a possible initial TCP communication with an initial congestion
window (init_cwnd)15 value of four. The exponential growth during the first RTTs is
typical because both sides try to converge to the maximum throughput of the current
connection as fast as possible. This phase ends if the rwnd is reached, a loss event occurs,
or if the slow-start threshold (ssthresh) variable is greater or equal to the cwnd. It is
important to note that the ssthresh variable has a very high value, infinity, or zero at the
beginning, and is not set until the first loss event occurs after which it is set to cwnd/2

(Kurose and Ross 2013, 272–73).

t = RTT ×
⌈
log2

(
x

init_cwnd

)⌉
(2.10)

15. Init_cwnd and init_rwnd values are always given as a multiplier for the MSS on Linux OSs.
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The time that is necessary to reach the desired bandwidth can be calculated with
equation (2.10), where x denotes the size in TCP segments (Grigorik 2013a, 21). The
maximum segment size (MSS) must be known in order to convert the target rwnd to
TCP segments. Therefore, an Ethernet network is assumed in the following example:
the maximum transmission unit (MTU) is 1,500 B as defined in RFC 894 (Hornig 1984,
1)16, and the MSS is 1,460 B (= 1500 − 20 − 20) after deducting presumed IPv4 headers.
This results in 170 ms that are necessary to reach the desired throughput of 127 KiB from
equation (2.9) if the previously calculated 34 ms from equation (2.3) are used as RTT; see
the following equation (2.11).

t = 34 ms ×

log2


⌈

127 KiB
1,460 B

⌉
4

 = 170 ms (2.11)

This translates to five full round-trips between the client and the server, provided
that all packets are actually able to go through and no additional processing time is
necessary. In order to speed up the conversion any variable may be optimized. The RTT
may be lowered by moving the participants closer to each other, or the init_cwnd may
be increased. The former is closely tied to service costs and often only feasible for entities
with enough capital, the latter may seem like something that can be easily done. But care
must be taken when choosing the value of the init_cwnd because too great values might
constantly overwhelm the underlying networks.

1 ip route | while read INTERFACE; do \
2 ip route change $INTERFACE initcwnd 10 initrwnd 10; \
3 done

Listing 2: Increase init_cwnd and init_rwnd on Linux with a kernel version of 2.6.33+.

However, the init_cwnd was first increased from one to four in RFC 2581, and was
elevated anew to ten via RFC 6928 based on the proposition and worldwide tests from
(Dukkipati et al. 2010; Allman, Paxson, and Stevens 1999; Chu et al. 2013). Linux has
applied the proposed change of the init_cwnd to ten segments (IW10) since kernel 2.6.3917,
but the init_rwnd is still set to four. Listing 2 shows how both multipliers can be changed
via the shell. The same code may be placed in /etc/rc.local to ensure that the values

16. The IETF prefers to use the term octet (unit o) to describe storage requirements within network
protocols. This has historical reasons and is mainly used to avoid ambiguity, byte (B) and o are synonymous
and both represent 8 bit. The usage of o is avoided in this thesis in favor of consistency.

17. http://kernelnewbies.org/Linux_2_6_39

http://kernelnewbies.org/Linux_2_6_39#head-c2acd2f0463943210471a42bf6f5b469a6999e7b
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persist during reboots.18

Another value that might has an influence on performance is slow-start restart (SSR),
which is applied to idle TCP connections after a predefined period of time. The cwnd is
discarded, and the whole slow-start process restarts. This is counter productive for long
living TCP connections, which may idle for several seconds. Listing 3 illustrates how this
value can be printed and changed on a Linux OS (Grigorik 2013a, 23).

1 sysctl -- 'net.ipv4.tcp_slow_start_after_idle' # print
2 sysctl --write -- 'net.ipv4.tcp_slow_start_after_idle'=0 # set

Listing 3: Printing and setting the SSR option.

2.2.4 Congestion Avoidance

Congestion collapse was already mentioned in section 2.1.1 and is a serious problem for
TCP with its automated retransmission of lost packets. But collapsing networks became
a real problem within the growing internetworks long before TCP and the WWW, as the
introduction of RFC 896 documents (Nagle 1984, 1–3). Many systems have been and are
developed to deal with such effects. A comprehensive introduction to the topic can be
found in (Kurose and Ross 2013), and is out of scope for this thesis.

The congestion avoidance—see red shaded areas in figure 3—comes into effect after
the first loss event and after cwnd is greater or equal to ssthresh. This phase was also
introduced by (Jacobson and Karels 1988, 8–11) and TCP’s approach to avoid a possible
collapse. The cwnd is not further doubled because it is assumed that this would directly
provoke further congestion. Instead, it is only increased by a single MSS (RFC 5681,
Allman, Paxson, and Blanton 2009) until the next loss event is encountered, and the
whole process starts anew; see figure 4 for a finite state machine that illustrates the
complete process. A considerable amount of different algorithms has been developed over
the last few decades, where the recovery phase from packet loss is handled differently.

These algorithms include, but are not limited to, TCP Tahoe and TCP Reno (original
implementations), TCP Vegas, TCP New Reno, BIC, CUBIC, and Compound TCP (Mi-
crosoft Windows). A new algorithm called Proportional Rate Reduction (PRR), which
is not following the additive increase/multiplicative decrease (AIMD) principle, was pro-
posed by (Dukkipati et al. 2011). This algorithm proved to decrease latency of short and
bursty web transfers by 3 % to 10 %, while reducing timeout recovery as well by 5 %. PRR

18. Tested on Debian based systems, and might be different on other Linux distributions.
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is the new default congestion avoidance algorithm in Linux since kernel 3.219 (Grigorik
2013a, 26–27; Kurose and Ross 2013, 274–78).

Slow
start
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Figure 4: Finite state machine illustrating TCP’s slow-start, congestion avoidance, and fast
recovery coherences (recreated from Kurose and Ross 2013, 275)

2.2.5 Head-of-Line Blocking

TCP has to ensure that all packets always arrive in order. This means that the receiver
has to keep all packets back in its buffer after a loss event and wait for the lost packet to
arrive again. Otherwise, the packets would not be handled in order. The lost packet must
be retransmitted before all subsequent packets can be sent. This problem is known as
head-of-line blocking (HOL blocking) and results in unpredictable fluctuations in latency,
commonly referred to as jitter. Web services like WebRTC (audio and video), which
can deal with out-of-order delivery or packet loss, and are more delicate towards latency

19. http://kernelnewbies.org/Linux_3.2

http://kernelnewbies.org/Linux_3.2#head-1c3e71416a9fdc2f59c1c251a97963f165302b6e
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variations, switched to UDP to overcome this phenomenon (Grigorik 2013a, 30–31).

2.3 Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is one of the most important application layer
protocols of the IPS and the Internet. It is, therefore, imperative to understand its mode
of operation to achieve a fast web application. There are other protocols in use that work
differently or build on top of HTTP, including WebSocket and WebRTC. However, these
other protocols are not covered in this thesis. Almost all HTTP traffic is using the TCP
and IP (see section 2.2) as communication protocols because of the reliable transport
requirement that is guaranteed by their stack (Comer 2014, 528; Grigorik 2013a, 155;
Kurose and Ross 2013, 98).

All versions of HTTP are working similarly at the core by functioning as a request
and response protocol between client and server. The UA of the client submits a request
message to the server, which returns a response. What is requested and responded varies
and is implementation dependent, but a request or response may contain additional
payload in its message body, such as an Hypertext Markup Language (HTML) document.
How these request/response messages are comprised depends on the used HTTP version,
but all versions operate through TCP streams that are established between the client’s
computer and the server.

2.3.1 HTTP/0.9: One-Line Prototype

The original HTTP, as such, was not defined, it was merely implemented as a proof of
concept by Tim Berners-Lee for his vision of the WWW. The first outline of the prototype
protocol can be found at (Berners-Lee 1991); it was very simple but sufficient.

The prototype features only a single method to request a response from a server—
the GET method—followed by the full Uniform Resource Identifier (URI) or only its path
of the desired document, terminated by two carriage return (CR) plus line feed (LF)
combinations. The response is always an HTML page (Grigorik 2013a, 156; Gourley and
Totty 2002, 16) or plain-text (Berners-Lee 1992a, 1992b), and the connection between the
two parties is directly terminated after the document transfer is complete. The complete
protocol is ASCII-only and running over a single TCP link.

Most of today’s web servers still support this initial version of the HTTP, as can be
seen in listing 4. The response returned by Google’s server is HTTP/1.0, which is not
only apparent because of the version indication in the very first line, but rather because
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a real HTTP/0.9 response would contain a single HTML ASCII text stream without any
headers or deviant character encoding. However, both of these features can be seen in the
response of the example. Nonetheless, the server is willing to handle the request.

1 $> telnet google.com 80
2 Trying 2a00:1450:4001:802::1003...
3 Connected to google.com.
4 Escape character is '^]'.
5

6 GET /
7

8 HTTP/1.0 200 OK
9 Date: Thu, 02 Oct 2014 20:55:08 GMT

10 Expires: -1
11 Cache-Control: private, max-age=0
12 Content-Type: text/html; charset=ISO-8859-1
13 [...]
14

15 <!doctype html>[...]</html>Connection closed by foreign host.

Listing 4: HTTP/0.9 request (with HTTP/1.0 response).

2.3.2 HTTP/1.0: Common Usage

The WWW grew very fast after its inception, and it was clear that HTTP/0.9 was too
simple and could not keep up with the growing requirements. Therefore, a first draft
specification with basic ideas on how HTTP/1.0 could work was published (Berners-Lee
1992a). Web developers produced a large amount of experimental HTTP clients and
servers that implemented variations of this specification. Then the developers waited for
other web developers to adopt their ideas.

In May 1994, the First International Conference on the World-Wide Web (WWW1)
was held in Switzerland, and the World Wide Web Consortium (W3C) plus the HTTP
working group were founded to guide the evolution of future web standards. The goals of
the working group were to improve and formalize HTTP as an IETF Internet standard.
The RFC 1945 published by the group with informational status documented the common
usage of various HTTP/1.0 clients and servers (Berners-Lee, Fielding, and Nielsen 1996).

A HTTP/1.0 request starts with the same line but adds two additional methods besides
GET—namely the HEAD (illustrated in listing 5) and POST methods—while explicitly stating
that these can be extended at will. The request’s path is now followed by the client’s
HTTP version string because a server would have to assume an HTTP/0.9 client if it
would be omitted. There are also many new header fields a request and response can
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1 $> telnet tools.ietf.org 80
2 Trying 2001:1890:123a::1:2a...
3 Connected to tools.ietf.org.
4 Escape character is '^]'.
5

6 HEAD / HTTP/1.0
7 User-Agent: Mozilla/2.0 (compatible)
8 Accept: */*
9

10 HTTP/1.0 200 OK
11 Date: Fri, 03 Oct 2014 10:24:58 GMT
12 Server: Apache/2.2.22 (Debian)
13 Last-Modified: Thu, 16 May 1996 20:40:03 GMT
14 Accept-Ranges: bytes
15 Content-Length: 137582
16 Vary: Accept-Encoding
17 Connection: close
18 Content-Type: text/plain; charset=UTF-8
19

20 Connection closed by foreign host.

Listing 5: HTTP/1.0 request and response.

carry along. The most important changes between the two versions can be summarized
as follows:

• Multiple new request methods.
• Request path must include trailing version information.
• Request can contain multiple header fields terminated by CRLF.
• Response is prefixed with status information.
• Response can contain multiple header fields terminated by CRLF.
• Response headers and body must be separated by two CRLF combinations.
• Response body may contain arbitrary data, and is not limited to HTML.

Request (and response) headers are still limited to ASCII characters, and a connection
is still required to be directly terminated after the response was sent to the client. This
means that every cycle in the communication requires an exclusive TCP connection, which
“imposes a significant performance penalty on HTTP/1.0” (Grigorik 2013a, 159).

2.3.3 HTTP/1.1: First Standard

While the HTTP working group was still working on the documentation of HTTP/1.0,
development of a real Internet standard was initiated as well under the name HTTP next
generation (HTTP-NG). The result of this development was RFC 2068, which was already
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(partly) adopted by many vendors in client, server, and proxy software alike by the time it
was released. This fast adoption of the pre-standards—“often referred to as HTTP/1.0+”
(Gourley and Totty 2002, 17)—lead to various problems (Krishnamurthy, Mogul, and
Kristol 1999, 660; Fielding et al. 1997).

The protocol was, thereafter, overhauled a few years later, which resulted in RFC 2616.
The updated standard aimed at resolving ambiguities, and improving interoperability
and performance (Krishnamurthy, Mogul, and Kristol 1999, 661–66; Grigorik 2013a, 159;
Fielding et al. 1999). But the evolution of the WWW went on, accompanied by the
advent of many new techniques to deliver and enrich web pages, like the generally known
asynchronous JavaScript + XML (AJAX) technology. The IETF, thereafter, instituted
the HTTPbis working group in 2007 with the goal to refine RFC 2616.

The objective of this working group was the incorporation of various updates, fixing
editorial problems and clarifying conformance requirements, but without developing or
extending the protocol any further (IESG Secretary 2007). The work took almost seven
years and resulted in various new RFCs. The two core specifications that define the
protocol since then are RFC 7230 and RFC 7231. All previous specifications—RFC 1945,
RFC 2068, and RFC 2616—were deprecated and obsoleted with the release of the RFC 723x
series, which further comprised widely used techniques extracted by the HTTPbis working
group from other RFCs plus a few amendments.

• Conditional requests (RFC 7232, Fielding and Reschke 2014b).
• Range requests (RFC 7233, Fielding, Lafon, and Reschke 2014).
• Caching (RFC 7234, Fielding, Nottingham, and Reschke 2014).
• Authentication (RFC 7235, Fielding and Reschke 2014a).
• New HTTP request methods (RFC 7236, Reschke 2014a).
• 308 moved permanent status code (RFC 7538, Reschke 2015).

This results in an extensive list of features that are available for HTTP/1.1, which
is beyond the scope of this thesis, as exemplified by the sheer amount of RFCs defining
the protocol. One performance problem, which results from the vast feature set, is that
many header fields exist that have to be sent along with each request and response. The
contents of those fields largely remain stationary across all messages, as illustrated in
listing 8 with a diff-comparison between both listing 6 and listing 7 requests for different
resources on the same web page. This problem derives from the statelessness of HTTP:
the counter-side does not know what headers were sent with another request, even if it
was sent over the very same TCP connection. But there are also a few important features
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that improved performance (Krishnamurthy, Mogul, and Kristol 1999):

• Range requests allow receivers to continue aborted downloads.
• Compression allows the usage of compressed coding to minimize payload size.
• Persistent connections allow reusing of existing TCP connections.
• Pipelining allows to send multiple HTTP requests over a single TCP connection.
• Chunked transfer-coding allows to start sending without prior knowledge of the final

size.

Parallel connections are not part of the specifications but mentioned and often used by
UAs to speed-up the process of downloading several resources at the same time. All of these
parallel connections share processing power and throughput on the participant’s computer.
The complete loading process is faster because delays are split, and the resources finish
transmission at approximately the same time. But parallel connections are not always
faster, especially, if throughput and processing capabilities are limited. Human perception
might still create the feeling of a faster loading page because some resources appear earlier
on the screen even if the complete download has not finished yet and takes longer as if
the resources were fetched in a more traditional, serial manner (Gourley and Totty 2002,
88–90).

Browsers have built-in limitations and will not establish more than six20 parallel
connections to the same domain21. A general advice for HTTP/1.x websites to optimize
the load times of pages is, therefore, domain sharding, where multiple domains are used to
reference resources within the same page. This way, browsers are tricked into establishing
more connections by scattering resources over multiple domains. The effect of domain
sharding is illustrated in equation (2.12), where tDNS denotes the time to perform the
necessary DNS look-up, x the domains in use, and y the total resource count within the
page (Stefanov 2012, 31–35; Souders 2009, 161–69).

t = (x × tDNS) + (x × RTT) + y × RTT
x × 6 (2.12)

This equation only applies to fresh connections, subsequent requests that are executed
over an existing connection are reduced to simply y × RTT/ x × 6; presumed that resources are
actually downloaded and not properly cached. Domain sharding, therefore, has numerous
drawbacks: a DNS look-up is necessary for each domain, a new TCP connection has to be

20. http://www.browserscope.org/?category=network
21. There are no IP address restrictions, and often simple CNAME DNS entries are used (Souders 2009,

168; Grigorik 2013a, 199).

http://www.browserscope.org/?category=network
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1 Host: www.ssllabs.com
2 User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:32.0) Gecko/20100101

Firefox/32.0↪→

3 Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
4 Accept-Language: en-US,en;q=0.5
5 Accept-Encoding: gzip, deflate
6 Cookie: JSESSIONID=4 ... e); __utmt=1
7 Connection: keep-alive
8 Pragma: no-cache
9 Cache-Control: no-cache

Listing 6: First HTTP/1.1 request.

1 Host: www.ssllabs.com
2 User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:32.0) Gecko/20100101

Firefox/32.0↪→

3 Accept: text/css,*/*;q=0.1
4 Accept-Language: en-US,en;q=0.5
5 Accept-Encoding: gzip, deflate
6 Referer: https://www.ssllabs.com/
7 Cookie: JSESSIONID=4 ... e); __utmt=1
8 Connection: keep-alive
9 Pragma: no-cache

10 Cache-Control: no-cache

Listing 7: Second HTTP/1.1 request to the same host as in listing 6.

1 --- http-11-request-1.txt Fri Oct 24 17:04:07 2014
2 +++ http-11-request-2.txt Fri Oct 24 17:04:41 2014
3 @@ -1,8 +1,9 @@
4 Host: www.ssllabs.com
5 User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:32.0) Gecko/20100101

Firefox/32.0↪→

6 -Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8
7 +Accept: text/css,*/*;q=0.1
8 Accept-Language: en-US,en;q=0.5
9 Accept-Encoding: gzip, deflate

10 +Referer: https://www.ssllabs.com/
11 Cookie: JSESSIONID=4 ... e); __utmt=1
12 Connection: keep-alive
13 Pragma: no-cache

Listing 8: Unified diff between listing 6 and listing 7.
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established to each host including slow-start—the sizes of the resources are not considered
in equation (2.12)—and last but not least a new TLS tunnel has to be negotiated for
each connection if encrypted communication is in use. This effect is further worsened if
persistent connections are not supported (Grigorik 2013a, 198–200).

Persistent connections were perhaps the most important addition to HTTP/1.1. In fact,
the semantics of HTTP were changed to always reuse established connections per default
because of the importance of this feature (Gourley and Totty 2002, 98). The Connection:
Keep-Alive HTTP header line was a non-standardized extension that worked differently
but allowed supporting software to create something similar in the earlier protocol’s
revision (Thomson, Loreto, and Wilkins 2012; Gourley and Totty 2002, 91–97). A lot of
software is still including this header line even if HTTP/1.1 is in use, as can be seen in
listing 6 and 7.

Pipelining (or pipelined connections) is another performance optimization, which was
introduced with HTTP/1.1 and can have a significant impact on load times. Apple, for
instance, was able to reach a 300 % speed-up in their iTunes software by using pipelined,
persistent connections on slower networks (Graessley 2012). This technique enables a
client to send multiple HTTP requests over the same persistent connection before any
response has arrived. In consequence, this allows parallel arrival and processing of the
resources, while effectively eliminating request propagation latencies.

But there are several issues with pipelining. First, and most importantly, it must be
supported by both—the client and the server. Most web servers support pipelining, but
no major browser has it activated.22,23,24 Secondly, multiplexing is not possible and the
server has to send the responses back in the same order as the requests arrived. This
means in effect that pipelined transactions work according to the first-in-first-out (FIFO)
principle and add another layer that is suspect to HOL blocking (see section 2.2.5 as well).

This is most apparent if HTTP streaming is in use because it blocks by definition.
The connection needs to stay open in order to allow the server to push data to the
client without the data being requested by the client. Attempts have been made to fix
this by extending HTTP/1.1 to support hints that the server can send to the client—
indicating which resources are safe to be pipelined—but they were abandoned in favor of
new multiplexing technologies like SPDY and HTTP/2; see figure 5 for a visual comparison
of the different HTTP connections (Grigorik 2013a, 192–96; Gourley and Totty 2002, 99–
100; Stefanov 2012, 34–35; Kurose and Ross 2013, 215–19; Nottingham 2011a; Fielding and

22. http://www.chromium.org/developers/design-documents/network-stack/http-pipelining
23. http://kb.mozillazine.org/Network.http.pipelining
24. https://bugs.webkit.org/show_bug.cgi?id=64169

http://www.chromium.org/developers/design-documents/network-stack/http-pipelining
http://kb.mozillazine.org/Network.http.pipelining
https://bugs.webkit.org/show_bug.cgi?id=64169
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Reschke 2014c, 2014d, 2014b; Fielding, Lafon, and Reschke 2014; Fielding, Nottingham,
and Reschke 2014; Fielding and Reschke 2014a; Reschke 2014a, 2014b).

2.3.4 HTTP/2: Next Generation

In 2009, Google started their “Let’s make the web faster” campaign because their ex-
periments showed that performance is one of the most important key factors to satisfy
users (Hoelzle and Coughran 2009; Brutlag 2009b, 2009a). In the same year, Google
announced that one of their developer teams started working on an experimental protocol
called SPDY as part of the campaign (Belshe and Peon 2009). A white paper followed
this announcement with an explanation why a new protocol was necessary as well as a
formalization of the goals for it (Google, Inc. 2009).

The main goals were a reduction of PLTs by at least 50 %, and avoidance of the need
for changes of websites or in existing network infrastructure (Grigorik 2013a, 208). It was
already explained in section 1 that encryption was necessary because Google would not
have been able to deploy the protocol otherwise, but improving security became another
goal of SPDY at a later point. Other industry leaders, like Mozilla and Amazon.com
Incorporation (Amazon), joined the SPDY development, and the IETF instructed the
HTTPbis working group at the beginning of 2012 to create a new HTTP standard (Winkler
2014, 1; Leiba and Morgan 2012).

The group used SPDY 2 as a working basis since the goals were very similar, but they
developed several changes and improvements until the final protocol was released in May
2015 as RFC 7540. The new revision promises shorter latencies, higher throughput, and
more efficient network resource usage. Further improvements are promised through the
inclusion of multiplexing and push technologies as well as compression of headers (Grigorik
2013a, 207). The latter is performed with the exclusively developed HPACK algorithm
and was defined in a dedicated specification, which was released along with HTTP/2 as
RFC 7541. SPDY also features header compression, but more on that later.

SPDY and HTTP/2 do not alter the semantics of HTTP. This does not mean that
the protocols are backward compatible, adoption of client and server software is necessary
to support them. However, web applications and network intermediaries, which are not
directly dealing with constructing or parsing HTTP messages, do not require any changes.
This is achieved through modification of the way how data is formatted (framed) and
transported between the peers, and should ensure a fast adoption of the new protocols for
obvious reasons. In fact, this approach already worked out for the experimental SPDY
protocol after only a few years with decent support in client and server software.
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The major version increment of the new revision is due to the new binary framing
layer. The decision to migrate from a textual to a binary protocol was based on the
facts that the former is more complicated to parse, requires more space, and is more
error-prone, as empirical knowledge with HTTP revealed. Additionally, text requires a
character encoding and various workarounds to deal with whitespace, capitalization, line
endings, or blank lines. This is exemplified by the various notices and warnings in regards
to parsing and interpreting of HTTP messages in RFC 7230 (Fielding and Reschke 2014c,
19–34; Grigorik 2013a, 207–11).

Both protocols only use a single TCP connection to exchange data between peers in
order to minimize the negative effects of establishing multiple connections and to introduce
multiplexing. In HTTP/2 each such stream contains one or more messages which are sets
of aforementioned frames. They are the smallest unit and indicate the type of data (see
section 6. of Belshe and Peon 2015, 31–49) they encapsulate with some additional data in
their header, which at minimum needs to include the stream identifier. This requirement
is necessary because such a HTTP/2 TCP connection can contain an arbitrary amount
of bidirectional streams, messages, and frames that can be interleaved and reassembled.
The latter is only possible via these identifiers.

This new binary framing layer of HTTP/2 with the multiplexed streams over a single
TCP connection is the most important change of the protocol in the context of performance.
It removes the HOL blocking of HTTP entirely, but more improvements were incorporated.
HTTP header redundancy was already mentioned and illustrated in section 2.3.3, and
the SPDY authors addressed this issue by utilizing the deflate algorithm to compress
headers. The representation of redundant header fields was very effectively reduced, but
researchers found that it leads to information leakage, which allows attackers to perform
a so called session hijacking attack, known as Compression Ratio Info-leak Made Easy
(CRIME) (Peon and Ruellan 2015, 3; Rizzo and Duong 2012).

A new algorithm called HPACK was developed for HTTP/2 to counteract the CRIME
attack and defined in a dedicated specification (RFC 7541, Peon and Ruellan 2015). The
new approach uses two mechanisms to reduce the redundancy and size of HTTP headers:
for one thing, it uses an (optional) static Huffman encoding to compress string literals,
which is considered to mitigate the CRIME attack (Peon and Ruellan 2015, 21; Tan
and Nahata 2013; Huffman 1952), and ,for another thing, it utilizes indexed lists of
previously sent name-value header field pairs, which allows index references and, in further
consequence, the omission of the entire header name and value.

A dynamic and static table of previously encountered header fields are maintained



2 METHODS 31

:method GET

:scheme https

:host example.com

:path /resource

user-agent Mozilla/5.0 ...

custom-hdr some-value

Request headers Static table

Dynamic table

Encoded headers

1 :authority

2 :method GET

... ... ...

51 referer

... ... ...

62 user-agent Mozilla/5.0 ...

63 :host example.com

... ... ...

2

7

63

19 Huffmann("/resource")

62

Huffmann("custom-hdr")

Huffmann("some-value")

Figure 6: HTTP/2 header compression HPACK (Fussenegger 2015b; Grigorik 2015).

and updated on both the client and server side. Both tables share their address space,
and while the static table is used for pre-defined standard headers (see appendix A. Peon
and Ruellan 2015, 25–26) the dynamic table is used for others. An index is assigned to
each header that is appended in the dynamic table, which can be used for the previously
mentioned index references in later frames of the same connection. A simplified illustration
of this approach can be found in figure 6. The combination of the binary framing layer
with fixed-length fields and HPACK for compression reduces the overhead of the protocol
to a minimum for both compact representation and simple parsing (Belshe and Peon 2015,
12–14; Peon and Ruellan 2015; Grigorik 2013a, 211–17, 222–24, incorporating updates
from the online version).

HTTP/2 introduces its own flow control mechanism because TCP’s flow control (see
section 2.2.2) is not granular enough, and does not provide the necessary application
programming interfaces (APIs) for the regulation of individual streams. The specification
does not mandate a particular algorithm for this feature and provides only the format
and semantics for an implementation. All problems that were previously presented in the
context of TCP’s flow control need to be taken into account for HTTP/2’s flow control as
well. This means that HOL blocking may occur within a connection if it is not handled
properly, and deadlocks may occur if critical frames are not processed (Belshe and Peon
2015, 22–24; Grigorik 2013a, 218–19).

Stream dependencies, priorities, and weights allow a peer to suggest an endpoint how
it would prefer resource allocation for the streams of a connection. A prioritization tree
can be built from this information, which can be used to optimize the delivery of data.
For instance, HTML documents and Cascading Style Sheets (CSS) are very important
for rendering a web page because the Document Object Model (DOM) and CSS Object
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Model (CSSOM) need to be built from them in order to render the page. This means
in effect that a client could prioritize them over other resources and make everything
else dependent on their successful delivery. Efficient, automated prioritization was and is
subject of ongoing research (Belshe and Peon 2015, 24–28; Grigorik 2013a, 215–17).

Server push is another feature that can be utilized to improve the performance of web
applications, but also for many other purposes and completely new applications. It breaks
out of the request/response semantic of HTTP, and permits one-to-many workflows, which
previously were only possible through various hacks. A server can push multiple resources
for a single request of a client, but how many and what kind of resources is controlled
by the client. This is an important security feature, and allows conditional processing
based on the client’s cache, for instance, as it can decline any stream. Resource inlining
via data URIs would be an example of forced push without any caching opportunity,
which is elegantly solvable with server push (Belshe and Peon 2015, 60–63; Grigorik 2013a,
219–22).

In order to use HTTP/2 for communication an upgrade process is necessary because
peers have to assume an HTTP/1 counterpart. A complete section of the specification is
dedicated to all three possible cases of upgrades (Belshe and Peon 2015, 8–10). The most
common case is going to be the upgrade during the TLS handshake via the Application
Layer Protocol Negotiation (ALPN) extension (defined in RFC 7301 Friedl et al. 2014)
because major browsers will not support unencrypted connections with HTTP/2, as was
already explained in section 1.

The TLS handshake always has to happen before any application data may be trans-
mitted. This means that the upgrade will not add additional round-trips or any other
unwanted side-effects that affect performance. The exact upgrade process, especially of
the other two cases, is not important at this point as it is an implementation detail that
is covered by the client and server software. But it is important to note that HTTP/2
connections without TLS may break even with the prior knowledge that the endpoint
supports the new protocol simply because intermediaries always change, and one or more
might not be able to handle the new protocol in subsequent connections. TLS with ALPN
is the safe choice for best utilization of the new features (Grigorik 2013a, 224–26).

All in all HTTP/2 looks promising, but future adoption has to show if the protocol
will be a success or not. Research has to provide algorithms that improve stream handling,
especially prioritization and flow control. Further discussion of SPDY is omitted at this
point in favor of HTTP/2 simply because it was an experimental protocol from the very
beginning, and Google already announced that they will drop SPDY and support only
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HTTP/2 in the future (Bentzel and Béky 2015). It is sufficient to note that the latest
SPDY revision is very similar to HTTP/2, and that it was always used by Google to test
new ideas for its successor.

2.4 Cryptography Primer

Although this thesis is not about cryptography per se, a few very basic concepts need to
be explained in order to understand how TLS and the former SSL achieve their goals of
confidentiality, integrity, and authenticity. The goal is always for two parties—A and B

that are called Alice and Bob (bound by tradition Rivest, Shamir, and Adleman 1978, 121)
—to communicate securely over an insecure channel. Various cryptographic primitives are
necessary to achieve this goal, and to assure the aforementioned three properties. There
are a few terms that are commonly used in this context, which can be clarified without
further in-depth explanation (Paar and Pelzl 2010, 5):

• Clear- or plaintext x is the original data.
• Cipher is the algorithm in use for performing encryption or decryption.
• Ciphertext y is the encrypted data.
• A cryptographic key k might be involved where indices indicate the type.
• Key space K is the set of all possible keys from which a key k can be derived from.

It is possibly the most important aspect of many cryptographic systems and usually
determines its strength.

2.4.1 Random Number Generators

Random number generators (RNGs) play a very important supporting role and are, of
course, no cipher. “In cryptography, all security depends on the quality of random number
generation.” (Ristić 2014, 14) The randomness of these generators is, therefore, absolutely
crucial for all ciphers which rely on an initialization vector (IV). There are three types of
RNGs (according to Paar and Pelzl 2010, 34–36):

• True random number generators (TRNGs) that generate real randomness and are
usually implemented as physical devices. For instance, a microphone placed nearby
a heavily trafficked street or computer mouse moved by a human could provide such
randomness.

• Pseudo random number generators (PRNGs) or deterministic random bit generators
(DRBGs) that generate statistical randomness based on a seed value and its extended
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type via an algorithm. Examples for this kind of RNGs include the special device
/dev/urandom on Linux OSs.

• Cryptographically secure PRNGs (CSPRNGs) that have the additional requirement
of producing unpredictable randomness. A good example would be the Yarrow
algorithm used in some Unix-like OSs for /dev/random.

Computers in general are not good at producing randomness since their inputs are
limited to certain states, which are often predictable. This situation is worsened if virtual-
ized environments are in use since these systems have no access to real physical hardware
(Everspaugh et al. 2014). Some CPUs feature built-in TRNGs—like the RdRand (Bull
Mountain) instruction on Intel Ivy Bridge processors—but many projects do not trust
these sources because of backdoor concerns.25,26,27,28

2.4.2 Hash Functions

Hash functions are very important primitives in cryptography, and, probably, the best
known type among web developers and administrators. They exist in various flavors and
are classified as either keyless or keyed. The input can be of variable length, while their
output is always a short, fixed-length bit-string: the so called digest, hash value, or simply
hash. Keyed hash functions, obviously, require a key, which is of a fixed-length and leads
to further differentiation because a key may be private or public. However, all incarnations
are generally working very similar by utilizing a construction function that repeatedly
calls a compression function (Al-Kuwari, Davenport, and Bradford 2010, 16).

The usage of hash functions is manifold in cryptography, and they are necessary for
digital signatures, message authentication codes (MACs), or to securely store passwords.
Another typical usage example is file comparison or integrity checks with a digest known
in advance. Hash functions are usually extremely fast and produce a small output even
for hundreds of megabytes. Modern parallelizable hash functions promise even faster
execution times on todays multi-processor architectures. In order for such functions to be
useful in the context of cryptography, three requirements have to be met (according to
Paar and Pelzl 2010, 296; Ristić 2014, 10):

• Preimage resistance (or one-wayness): given a digest, it must be computationally
infeasible to find or construct data that produces the same digest.

25. https://plus.google.com/+TheodoreTso/posts/SDcoemc9V3J
26. http://www.theregister.co.uk/2013/12/09/freebsd_abandoning_hardware_randomness/
27. http://www.theregister.co.uk/2013/09/10/torvalds_on_rrrand_nsa_gchq/
28. https://www.freebsd.org/news/status/report-2013-09-devsummit.html#Security

https://plus.google.com/+TheodoreTso/posts/SDcoemc9V3J
http://www.theregister.co.uk/2013/12/09/freebsd_abandoning_hardware_randomness/
http://www.theregister.co.uk/2013/09/10/torvalds_on_rrrand_nsa_gchq/
https://www.freebsd.org/news/status/report-2013-09-devsummit.html#Security
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• Second preimage resistance (or weak collision resistance): given a digest and the
data it was produced from, it must be computationally infeasible to find different
data which produces the same digest.

• Collision resistance (or strong collision resistance): it must be computationally
infeasible to find two different data that produce the same digest.

Examples for well known hash functions are MD (family), SHA (family), RIPEMD
(family), and Whirlpool. Some of them are cryptographically broken and should not be
used anymore for security sensitive applications.

2.4.3 Symmetric Cryptography

Symmetric cryptography (also known as private-key, symmetric-key, secret-key, or single-
key cryptography) ciphers have two defining properties. First—and most importantly—
one single and identical secret key is used by Bob to encrypt and Alice to decrypt the
document and vice versa; see figure 7. The second property is that the decrypt and
encrypt functions are very similar or even identical. There are, furthermore, two modes of
operation: stream and block ciphers. The first mode, as the name already suggests, takes
a stream of data, often byte-wise (Ristić 2014, 7), and encrypts/decrypts continuously. A
well known example for a symmetric stream cipher would be the Rivest Cipher 4 (RC4).

Figure 7: Illustration of symmetric cryptography (Fussenegger 2014c).

A block cipher, on the other hand, takes a fixed amount of data (often 128 bit (8))
and encrypts/decrypts each block successively. Data which does not fill such a block
has to be padded in order to fill it. Block ciphers can build the basis for many other
cryptographic primitives, like the already explained hash functions. Well known examples
for block ciphers include the Advanced Encryption Standard (AES), Blowfish, Camellia,
Data Encryption Standard (DES), International Data Encryption Algorithm (IDEA), and
Rivest Cipher 5 (RC5). Both types of symmetric algorithms have the positive feature
of being very fast compared to other cryptographic algorithms; even for large amounts
of data. However, while these algorithms are fast and secure they also have various
disadvantages. The secret key, obviously, has to be distributed between Alice and Bob,
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which has to happen over a secure channel because otherwise a malicious party could tap
the key and decrypt the data as well.

Additionally, a single key will most certainly not suffice for a large group of u users,
otherwise everyone could decrypt each message. This means that each user pair needs
its own key pair. As a result, each user would have to store u − 1 keys as visualized in
figure 8. With this result, the total keys in circulation can be deduced by multiplication
with the number of users participating in the system. From this it follows that even a
small group of ten users would already require forty-five key pairs, as can be seen in the
following equation:

ktotal = u × (u − 1)
2 (2.13)

Figure 8: Complete graph visualizing symmetric cryptography key distribution for three
users (Benbennick 2006).

Further, a group of two thousand users would already require approximately two
million key pairs. There are various approaches to tackle this, like Kerberos, which is a
sophisticated protocol that is indeed widespread. However, all of those approaches have
various problems, like communication requirements, secure channel during initialization,
single point of failure, and no perfect forward secrecy (PFS) (see section 2.4.8; Paar and
Pelzl 2010, 150–51, 336–41). The last “problem” is that messages are repudiable since all
involved users have the same key.

Alice could simply encrypt a message and claim that it was sent by Bob, and he would
not be able to prove the opposite. This could also be a feature—for instance in Off-
the-Record (OTR) messaging (Borisov, Goldberg, and Brewer 2004)—but it is a serious
problem in e-banking or e-commerce systems. The transfer of funds or the ordering of
a product has to be non-repudiable, which is not possible with symmetric cryptography
(Paar and Pelzl 2010, 4–6; Ristić 2014, 4–9; Thomas 2000, 22–24).
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2.4.4 Message Authentication Codes

Message authentication codes (MACs, also known as cryptographic checksum or keyed
hash function) can provide integrity and authenticity assurances through the usage of
symmetric cryptography. This is necessary because Alice needs the ability to validate that
the message she received is the unaltered original sent by Bob. It was already clarified
in section 2.2.1 that any party with access to the communication channel is also able to
intercept and manipulate data that is being sent. Consequently, every such party has the
ability to alter messages in the channel. MACs help to solve this problem by attaching a
cryptographically secure authentication tag a to the message.

The a is generated by the sender Bob via a key k, enabling Alice to verify the integrity
and authenticity of the message. This way, she will know to discard the message if the
tag does not match. Of course, the k has to be transmitted to Alice in advance over
a secure communication channel. Otherwise, Alice is not able to decrypt the attached
a. The summed up properties of this supporting cryptographic primitive are, therefore
(according to Paar and Pelzl 2010, 321):

• Checksum, by appending an authentication tag.
• Symmetric keys, shared by all participants.
• Message integrity, making transit manipulation detectable by receiver.
• Authentication assurance of valid origins.
• Repudiable, as the receiver cannot verify that the sender was a particular person.
• Plus all properties from the hash functions:

– Extremely fast.
– Arbitrary input size.
– Fixed-length output.

Symmetric block ciphers are historically the basis for MACs, but other modes of op-
eration are possible. The name hash message authentication code (HMAC) is used if a
cryptographically strong hash function forms the basis. Some of the fastest implemen-
tations are based on universal hashing, like VMAC (Krovetz and Dai 2007). Another
specialty of MACs is that they can operate with multiple different cryptographic prim-
itives, which is actually used in TLS, where the data is split in half and the computed
digests are XORed to compose the actual MAC (Paar and Pelzl 2010, 319–28; Ristić 2014,
10–11).

It is important to note that MACs are not encrypting or decrypting anything, they
only provide integrity and authenticity. Confidentiality, or the encryption of the message,
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happens in a separate step. When this step is performed is up to the implementation.
However, it may be combined in a single cipher that is known as authenticated encryption
with associated data (AEAD). Three such approaches are currently in use in different pro-
tocols. The following list recapitulates them in a mathematic notation, where fmac denotes
the MAC generation function, and fsym the symmetric encryption function (according to
Krawczyk 2001, 311):

• Authenticate-then-encrypt (AtE) or MAC-then-encrypt (MtE)

1. a = fmac(x)
2. y = fsym(x, a)
3. y is transmitted.

• Encrypt-then-authenticate (EtA) or encrypt-then-MAC (EtM)

1. y = fsym(x)
2. a = fmac(y)
3. y and a are transmitted.

• Encrypt-and-authenticate (E&A) or encrypt-and-MAC (E&M)

1. y = fsym(x)
2. a = fmac(x)
3. y and a are transmitted.

EtA/EtM is currently considered to be the best approach and was standardized for
TLS in RFC 7366, but it is not implemented in any widely adopted software as of yet.
The default approach for TLS is, therefore, still AtE/MtE with Galois/Counter Mode
(GCM) from RFC 5288, being the best available AEAD cipher which is used in practice
(Ristić 2014, 44–45; Gutmann 2014; Salowey, Choudhury, and McGrew 2008).

2.4.5 Asymmetric Cryptography

Asymmetric cryptography (also known as public-key cryptography) utilizes a key pair per
user, where one key is public and the other is private. The principle behind the system is
very easy to describe: a night safe of a bank is accessible to everyone who can access the
foyer of the bank (public key), but the contents of the night safe are only accessible to
the persons who have the key to it (private key). Data encrypted with Alice’s public key
kpublic is only decryptable with Alice’s private key kprivate, whereas data encrypted with
kprivate is decryptable by anyone in possession of kpublic; see figure 9.

The greatest advantage of this approach is that kpublic can be transmitted over an
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Figure 9: Illustration of asymmetric cryptography (Fussenegger 2014d).

insecure communication channel because any malicious party receiving kpublic can only
encrypt messages for the owner of kprivate. A side-effect of asymmetric encryption is the
fact that kprivate makes sure that the message is non-repudiable, a property that none of
the aforementioned ciphers was able to provide. Bob can sign the data encrypted with
Alice’s public key with his private key, and Alice can use that signature after decrypting
the data to validate his digital signature (Paar and Pelzl 2010, 4–6, 152–54; Ristić 2014,
12–13).

2.4.6 Digital Signatures

Digital signatures extend upon the MAC idea by utilizing asymmetric instead of symmetric
cryptography, and in turn provide non-repudiability for certificates, documents (contracts,
emails, etc.), software updates, and much more. There are a few different signature
schemes: the best known and most widely used form is the Rivest Shamir Adleman
Cryptosystem (RSA), and a newer kind is the Elliptic Curve Digital Signature Algorithm
(ECDSA). In fact, only these two are supported in TLS (Paar and Pelzl 2010, 259–64;
Ristić 2014, 13–14). The following properties are provided by digital signatures (according
to Paar and Pelzl 2010, 264):

• Identity authentication, by establishment and verification of participants.
• Access control, based on a provided signature.
• Availability, by assurance that a system is reliably available.
• Auditing, which provides evidence about events (via logs for instance).
• Physical security, by protection against tampering.
• Anonymity, by protection against identity theft or misuse.

How digital signatures can be validated within the ecosystem of TLS and the Internet
is discussed in more detail in section 2.6.4, as this yields multiple challenges and is a highly
controversial topic.
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2.4.7 Choosing Key Sizes

It was already mentioned that the strength of many ciphers is determined by the key space
K. Choosing an appropriate size is probably the easiest decision during the deployment
of cryptographic services. But simply choosing the greatest available K, while tempting—
since it seems to promise highest security—might not be the wisest decision. The resulting
huge keys come with additional computational complexity during generation, sending, and
validation that must not be disregarded.

Various standardization bodies29 try to address this problem by giving recommenda-
tions based on multiple factors, which are out of scope for this thesis to discuss. See
(Dent 2010) for a high level introduction to the topic or (BSI 2015), (ANSSI 2014), and
(Smart 2013) for non-US publications. The problem is further exacerbated by the fact
that some ciphers are insecure and should not be used at all, and that key sizes are not
easily transferable from one type of cipher to another.

RFC 7525 was especially created to address these issues for the TLS ecosystem and
gives recommendations for choosing proper ciphers and key sizes. It concludes that 128 bit
of security (2128 operations) are considered to be adequate for generic web services. Table 3
gives a compact overview of key sizes used and supported in most TLS implementations.
The low security row in the table should not be used, for reasons explained in detail in
the RFC, especially since Mozilla already begun phasing out weak keys in its Network
Security Services (NSS) library (which affects their Firefox and Google’s Chrome browser;
Wilson 2014, 2015; Sheffer, Holz, and Saint-Andre 2015).

Security Symmetric Asymmetric Elliptic curve (EC) Hash

Low 96 1,024 192 192
Default 128 2,048 256 256
High 256 4,096 512 512

Table 3: Commonly used key sizes within the TLS ecosystem (Ristić 2014, 17–18, 236–37;
Sheffer, Holz, and Saint-Andre 2015).

2.4.8 Perfect Forward Secrecy

Perfect forward secrecy (PFS) is an important term in cryptography that describes an
attribute of key exchange algorithms. Traditionally, static RSA and Diffie–Hellman key
exchange (DH) are used for transportation of the intermediate keys that will be used to

29. Interactive overview of various recommendations: http://www.keylength.com/

http://www.keylength.com/
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encrypt the data in flight. This means in effect that the security of all connections depends
on the server’s private key. A compromise of that key consequently allows a third party
to decrypt any communication that was ever performed with this key, not to mention the
obvious other implications that such a compromise would lead to.

Alternative key exchange algorithms generate a new key for each session without using
deterministic algorithms. Thus, a compromise of the server’s private key in the future will
not allow the adversary to decrypt previous communication. Such a system is commonly
referred to as PFS, and currently two such methods are available in TLS: The older is
known as ephemeral Diffie–Hellman key exchange (DHE or EDH), which was first proposed
to the public by (Diffie and Hellman 1976) and further refined in (Diffie, Hellman, and
Merkle 1980). The system is based on the discrete logarithm problem and requires the
generation of strong domain parameters (also known as Diffie–Hellman parameters) that
are basically just prime numbers.30

The session’s dynamic encryption key is derived from those parameters, and the
ephemerality is secured by randomly chosen integers from both peers that are necessary
for exponentiation operations (Paar and Pelzl 2010, 206–8; Bernat 2011). The size of the
domain parameters directly translates to the security of each connection. Most servers
use 1,024 bit, which translates to about 80 bit of security. This amount of security might
suffice since the keys are only in use for a very short time, but generation of a key with
the same amount of bits as the server’s RSA certificate is generally recommended (Ristić
2014, 244–45).

The exponentiation operations of the DHE method result in bad performance compared
to static methods. (Law et al. 1998) were the first to propose a new method that is based
on algebraic structures of elliptic curves over finite fields, which achieves the same security
with smaller keys, and provides a performance that is comparable to RSA. This method is
known as Elliptic Curve Diffie–Hellman key exchange (ECDHE), and works very similar
to DHE. The main difference is that there are less domain parameters to exchange between
both peers, and that all operations are based on predefined named curves. Those curves
were first defined in RFC 4492, with a small extension in RFC 5246, and addition of new
curves in RFC 7027 (Blake-Wilson et al. 2006; Dierks and Rescorla 2008, 78; Merkle and
Lochter 2013).

The creation of efficient and secure curves for key exchange is very difficult, and some
of the existing curves are suspect to backdoors from the NSA and the National Institute of

30. They can be generated with OpenSSL and its openssl dhparam command (see https://www.open
ssl.org/docs/apps/dhparam.html).

https://www.openssl.org/docs/apps/dhparam.html
https://www.openssl.org/docs/apps/dhparam.html
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Standards and Technology (NIST) because they are manipulable with special seed values
(Bernstein and Lange 2013). Various parties are, therefore, urging to move to new curves
defined by independent researchers instead of relying on the NIST standardization body.
One such new curve would be (Bernstein 2006), which was already drafted for inclusion
in TLS (Josefsson and Pégourié-Gonnard 2014).

However, PFS is a very important property of modern secure communication, and it is
expected that the upcoming TLS 1.3 standard will only support key exchange algorithms
that provide it.

2.4.9 Post-Quantum

Mentioning key sizes for cryptographic systems without bringing up quantum computing is
not possible any more because of the renowned factorization algorithm from (Shor 1994).
This quantum algorithm is able to find the prime factors of an integer in polynomial
time. Thus, it is able to break various cipher schemes, like RSA and elliptic curve
cryptography (ECC), in a very short time since they are based on the assumption that it
is computationally infeasible to factor such large numbers. This circumstance has lead to
a completely new field of study called post-quantum cryptography (Bernstein, Dahmen,
and Buchmann 2009).

On the one hand, this field consists of researchers trying to invent new ciphers that
can withhold quantum computers, and, on the other hand, there are those researchers
who try to create such quantum computers. This ongoing research sparked various cipher
schemes that are considered to be quantum safe. But, most importantly in the context
of this thesis, they also promise increased performance compared to current ciphers (Bos
et al. 2015). However, as of now no such cipher was standardized or included in the TLS
protocol.

2.5 Transport Layer Security

Transport Layer Security (TLS) is the de facto standard for securing communication in
the Internet. The protocol is a wrapper around other application layer protocols and is
accordingly situated in the same layer of the IPS—in strong contrast to what the actual
protocol’s name might suggest.31,32 TLS was specifically designed for transport protocols

31. The name often yields confusion, and authors are tempted to place TLS and SSL within the transport
layer of the IPS, as seen in (Oppliger 2009, 67, Figure 3.1).

32. Some authors argue that TLS and SSL add an additional layer to the IPS stack, as seen in (Thomas
2000, 8).
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that provide reliable data delivery, like TCP. But it was also adapted for unreliable
datagram protocols like UDP under the name Datagram Transport Layer Security (DTLS).
However, all TLS revisions have the same goals (according to Ristić 2014, 2; Dierks and
Allen 1999, 4; Dierks and Rescorla 2006, 5; 2008, 6):

• Cryptographic security, the major target.
• Interoperability between independent protocols and software.
• Extensibility by being a framework that does not depend on specific implementations.
• Relative efficiency by attaining all goals at tolerable performance costs.

TLS offers security through cryptography, which is “the science and art of secure
communication” (Ristić 2014, 4) and is almost as old as mankind itself.33 It follows the
key principles of Information Security (InfoSec) by honoring confidentiality, integrity, and
availability (CIA triad)34. If TLS is correctly configured, this means in effect that the
cryptographic part keeps information secure and protects against eavesdropping (confiden-
tiality), ensures safe transport and prevents alterations (integrity), and is always active if
in use (availability). The triad is almost always extended with authenticity in the context
of TLS because of the X.509 dependency.

However, in theory it would be possible to use TLS without any form of authentication
by using anonymous cipher suites (see section 2.5.1), pre-shared keys (RFC 4279, Badra et
al. 2005), or Kerberos cipher suites (RFC 2712, Medvinsky and Hur 1999). But—as hinted

—this is almost never the case in practice, and the cryptography part of TLS is extended
by proving identities of one or both participants and, in turn, protects against forgery and
masquerading. But building trust is a complicated thing and the most criticized part of
the whole TLS ecosystem; further details can be found in section 2.6.4.

It is important at this stage to point out that TLS will only provide point-to-point
encryption (P2PE) and not real end-to-end encryption (E2EE). Meaning that only the
transport of the message is secured between the client and the server that communicate.
True multi-node E2EE would have to be implemented in the wrapped application protocol;
the Internet Protocol Security (IPSec) was standardized by the IETF for this purpose
(Meyer 2014, 3). TLS uses asymmetric cryptography to achieve the goal of authenticated
P2PE, and to exchange a key for symmetric encryption of subsequent message exchanges
between the client and the server.

All revisions of the protocol are multi-layered and consist of several higher-level sub-
protocols that must be encapsulated in the TLS Record Protocol. Two phases are necessary

33. https://en.wikipedia.org/wiki/History_of_cryptography
34. Not to be confused with the Central Intelligence Agency (CIA).

https://en.wikipedia.org/wiki/History_of_cryptography


2 METHODS 44

in order to securely communicate data between the participants. The negotiation phase
(handshake, explained in more detail in the next section) comes first in order to agree upon
the security parameters, cipher suites, validate identities (server only or both sides), and
a pre-master secret by exchanging keys or by choosing arbitrary parameters (depends on
the chosen cipher). It follows the application phase in which real data can be exchanged
securely (Ristić 2014, 25–32; Meyer 2014, 3–4; Grigorik 2013a, 47–52; Oppliger 2009, 75–6;
Thomas 2000, 67; Dierks and Allen 1999; Dierks and Rescorla 2006, 2008).

The following terms are important to distinguish and are used throughout the rest of
this thesis in the context of TLS (based on Meyer 2014, 5):

• Connection is a communication channel between two peers without security.
• Session is a connection with agreed upon cryptographic parameters for security.
• Channel is a unique session with a particular set of keys and active security.

2.5.1 Cipher Suites

Cipher suites are a standardized set of cryptographic algorithms that are uniquely iden-
tifiable by two bytes in TLS, and commonly referred to via their constant’s name. Such
a suite always consists of four algorithms that are used for key exchange, authentica-
tion, encryption, and hashing. An example for such a suite would be one of the current
recommended cipher suites: TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 (byte string
0xC0,0x30). The prefix TLS is always present in a TLS cipher suite and indicates the
associated standard, ECDHE describes the key exchange algorithm, RSA the authentication
algorithm, AES_256_GCM the encryption algorithm, and SHA384 the hash function. Suites
are used to enable easy addition and deprecation of used algorithms in the TLS protocol,
and to avoid hard-coded cryptographic primitives within the standard.

2.5.2 Negotiation Phase

The TLS negotiation phase must precede every secured connection attempt in order to
create an encrypted channel. However, the TCP handshake must always initially be
completed to ensure that a reliable connection between both network participants exists
before any TLS specific data may be transmitted. Multiple round-trips between both peers
are, therefore, necessary, which imposes a significant overhead compared to an unencrypted
channel. Some attempts that try to lower this overhead were already mentioned earlier,
namely TFO and QUIC. Of course, the connection setup might differ with other protocols
such as DTLS, but it generally applies to the usual HTTP Secure (HTTPS) traffic.
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Further, the TLS Handshake Protocol is used during the negotiation phase to optionally
authenticate one or both peers, to securely generate a shared secret for encryption of
application data, and to ensure that the channel is secured against any third parties (Dierks
and Rescorla 2008, 3–4). Figure 10 illustrates the full TLS handshake for a completely
new connection, and extends figure 2 with the same timing values from section 2.1.1. The
following list summarizes the messages that are usually exchanged between both peers
during the negotiation phase.

1. The client can send the ClientHello message after the TCP connection is estab-
lished, which starts the negotiation phase. Includes supported protocol versions, a
RNG value, a session identifier (always empty during initial negotiation phase), and
lists of supported ciphers and compression methods. The client may also request ex-
tensions in this message since RFC 3546, which is part of the protocol since TLS 1.2
(Blake-Wilson et al. 2003; Dierks and Rescorla 2008, 44–46).

2. The server answers with the ServerHello message, which contains the chosen
protocol version, an RNG value, a session identifier (may be empty if not supported),
the chosen cipher suite and compression method. The ServerCertificate message
directly follows for trust establishment; see section 2.6.4. A ServerKeyExchange
message might follow with additional parameters for the generation of the pre-
master secret, this depends on the used cipher. Another optional message at this
point would be the request to the peer for a certificate if mutual authentication is
required, but this is usually not the case while browsing the Internet. The end of
this transmission’s messages is indicated by the ServerHelloDone message, which
must be the last.

Another full round-trip was required for this message exchange, and the total time
adds up to 136 ms. Assuming that all the information fitted into a single packet, as
longer keys often require more transmissions. This should be taken into account for best
performance. Also note that nothing was encrypted so far, and everything was sent in
cleartext. The client now wants to validate the server’s certificate if it sent one, which
has to happen outside of the TLS system, and is covered in section 2.6.4. The negotiation
phase eventually continues if the client trusts the server and everything seems valid:

3. The client sends its certificate if requested and available, but it always has to send the
ClientKeyExchange message at this point. This contains additional parameters for
the generation of the pre-master secret or is simply empty if no additional parameters
are required by the used cipher. The ChangeCipherSpec protocol’s message follows,
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which instructs the server that the peer is now switching from cleartext to ciphertext.
The final Finished message is created, which contains a MAC of all messages the
client received and sent so far.

4. The server decrypts the parameters from the ClientKeyExchange payload, and
validates the integrity of the complete negotiation phase based on the MAC the
client transmitted. It also switches from cleartext to ciphertext, and informs the
peer with the ChangeCipherSpec protocol’s message about the change. The server’s
Finished message follows, which again contains a MAC of all messages it received
and sent so far.
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Figure 10: Full TLS 1.2 handshake (Fussenegger 2015c).

The total time for the message exchange is now at 204 ms and at least three full round-
trips had to be completed, or in other words: a 6-way handshake. Any further commu-
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nication will be encrypted and decrypted with a symmetric key for confidentiality, and a
MAC for integrity based on the master secret that was agreed upon during the negotiation
phase. Asymmetric cryptography was only used to establish a secure communication
channel since it would be too slow for efficient communication. Session resumption or
tickets (section 2.6.1) should be used to avoid the full negotiation phase, and perform an
abbreviated handshake as depicted in figure 11.
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Figure 11: Abbreviated TLS 1.2 handshake (Fussenegger 2015d).

Session resumption has to be enabled on the server side, and an identifier will be
included in the ServerHello message during the negotiation phase. A client may submit
this session identifier in its ClientHello message the next time it wants to establish a
TLS channel or if it wants to update the agreed upon cryptographic primitives in use.
The server then checks for the identifier in its appropriate cache, and reuses that session
information. The parameters that are used to secure the channel are always different since
the random values from both hello messages differ. This abbreviated handshake is one of
the simplest techniques to speed-up TLS connections by shaping off an entire round-trip
for subsequent requests, plus it is available in almost all implementations (Ristić 2014,
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25–32; Meyer 2014, 3–4; Grigorik 2013a, 47–52; Oppliger 2009, 75–76; Thomas 2000, 67;
Dierks and Allen 1999, 23–46; Dierks and Rescorla 2006, 24–51; 2008, 26–63).

2.5.3 SSL & PCT: Encrypt the Web

The fully patented SSL 2.0 protocol specification was first published to the public in
1995 (K. E. Hickman and ElGamal 1995; K. E. B. Hickman and ElGamal 1997). The
earlier revision SSL 1.0 was never released “due to conceptual weaknesses with regards
towards security” (Meyer 2014, 29). The situation did not improve much with SSL 2.0,
as detailed in RFC 6176. But the design of the handshake phase of these protocols
was already similar to the current system described in the previous section, only the
ChangeCipherSpec protocol and its messages were missing. And even the earliest known
documents of SSL already included the session resumption feature (Meyer 2014, 30; Turner
and Polk 2011).

Microsoft released its own specification called Private Communications Technology
(PCT) to address some security flaws of SSL, and to have a similar technology in their
Internet Explorer (IE) browser.35 They also released two versions of this specification in
a very short time. The intention of the first version of PCT was to fix the aforementioned
security flaws, and the second revision added new features. Microsoft created PCT as an
open standard from the very beginning, which ultimately lead to the transition from SSL
to TLS and future standardization of the protocol through the IETF (Benaloh et al. 1996;
Dierks 2014). But Netscape Communications Incorporation (Netscape) released another
revision of the protocol before that, which is still in wide use today.

SSL 3.0 was a complete overhaul of its precursor and released in late 1995. It was a
solid protocol with strong ciphers at that time, and it built the basis for all future work
from the IETF (Ristić 2014, 3). The redesign mainly affected the handshake phase—which
was the weakest point of SSL 2.0—with the introduction of the ChangeCipherSpec sub-
protocol. The handshake was further extended by authenticating all data that has to be
sent in cleartext before the actual encrypted session starts (Meyer 2014, 35–37). However,
SSL 3.0 is comprehensively broken today, like its precursors. The faults are so severe
that it is about to be deprecated by the IETF, and support for it must be deactivated in
existing deployments (Barnes et al. 2015; Möller, Duong, and Kotowicz 2014; Duong and
Rizzo 2011).

35. See https://en.wikipedia.org/wiki/Browser_wars for more background information.

https://en.wikipedia.org/wiki/Browser_wars
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2.5.4 TLS 1.0: Open Standard

TLS 1.0 is the first version released under the standards body of the IETF. The name
SSL was dropped and exchanged with TLS as part of the takeover agreements between
Netscape, Microsoft, and the IETF (Dierks 2014). The transition of the protocol was very
slow; the working group started their work in 1996, and the final release of TLS 1.0 was
RFC 2246 in January 1999 (Ristić 2014, 4; Dierks and Allen 1999). However, the version
number in the TLS record was only incremented by a minor number and set to 3.1 while
not being backward compatible:

The differences between this protocol and SSL 3.0 are not dramatic, but they are
significant enough that TLS 1.0 and SSL 3.0 do not interoperate (although TLS 1.0
does incorporate a mechanism by which a TLS implementation can back down to
SSL 3.0).

— (Dierks and Allen 1999)

The major changes to the protocol included a detailed specification of a pseudo random
function (PRF) for key derivation. The Alert, CertificateVerify, and Finished mes-
sages were changed, and the ChangeCipherSpec became mandatory before the Finished
message to mitigate the drop attack (Schneier and Wagner 1996). The last major change
was the replacement of the MAC with a HMAC (Meyer 2014, 37; Dierks and Allen 1999).

2.5.5 TLS 1.1: Improving Security

RFC 4346 was released in April 2006 to account for various security issues found in
TLS 1.0. The addressed vulnerabilities included the prevention of attacks against the
Cipher Block Chaining (CBC) operation mode through explicit inclusion of IVs for such
ciphers. This also made the key derivation process simpler since only four keys needed
to be derived from the master secret in contrast to the previous six. The handling of
padding errors was changed to mitigate the (Bleichenbacher 1998) attack, and the usage
of the so called export ciphers—which are weak by design36—was prohibited. Another
change included that connections that were terminated without a close_notify were
still resumable (Meyer 2014, 38–39; Dierks and Rescorla 2006, 5).

36. Ciphers which have the EXP or EXPORT key in their name; see https://www.openssl.org/docs/apps/
ciphers.html.

https://www.openssl.org/docs/apps/ciphers.html
https://www.openssl.org/docs/apps/ciphers.html
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2.5.6 TLS 1.2: Current Standard

The latest and current revision of the protocol was released as RFC 5246 in August 2008,
and it mainly addressed security issues like TLS 1.1 did. AEAD ciphers were introduced,
which also forced the reintroduction of IVs in the key derivation process. The MD-5 and
SHA-1 combination was removed from the PRF as well as digitally signed elements in
favor of configurable hash functions. This change also simplified both parts because a
single hash function could be used on the whole data. TLS extensions were merged into
the protocol and made RFC 3546 obsolete.

SSL 2.0 was deprecated while IDEA and DES ciphers were removed completely, plus a
few other changes. The protocol became much more flexible through the removal of hard-
coded cryptographic primitives. This should ensure that emerging vulnerabilities and new
ciphers of the future were easier to compensate and implement with the introduction of
extensions rather than the development of a new revision as it was the case in the past
(Meyer 2014, 39–40; Ristić 2014, 4; Dierks and Rescorla 2008, 4–5).

2.5.7 TLS 1.3: Next Generation

The need to revise the protocol once again arose from a wave of new attacks on the
protocol itself and its surrounding infrastructure, and the publication of SPDY and its
successor HTTP/2 with their de facto requirement for encryption. Performance came
more into focus in comparison to earlier revisions of TLS because the transition to a fully
encrypted web with those new protocols requires higher efficiency. The IETF working
group started in the beginning of 2014 with a formalization of the primary design goals
for TLS 1.3 (Turner and Morgan 2014).

One objective is to encrypt more data of the negotiation phase to minimize observable
cleartext messages for passive and active adversaries. The initial phase should be further
optimized by reducing the amount of round-trips that are necessary to establish a secured
channel. Full handshakes aim on as little as a single round-trip (1-RTT) and no round-trip
(0-RTT) for the abbreviated handshake in the best case. Further goals are of course updates
to used algorithms, ciphers, and mechanisms to reflect the current state of cryptographic
research and to avert latest attacks.

The protocol is still based on SSL 3.0 and even maintains backward compatibility
because the ClientHello message will not change. However, support for SSL 3.0 itself
will be prohibited for reasons explained in section 2.5.3. Overall, the changes go much
further than in any of the previous protocol revisions but are still in flux with an estimated
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final release in 2015 or 2016. Nonetheless, some of the major changes directly targeting the
main goals can already be summarized at this point because their inclusion is effectively
necessary even if details are not agreed upon yet.

An overhaul of the negotiation phase and the TLS Handshake Protocol was inevitable
in order to support extended encryption and a 1- to 0-RTT flow. It is important to note
at this point that the RTT count the working group is referring to does not include TCP’s
initial round-trip. This was not overseen by the authors, it simply is not part of TLS,
which assumes a reliable transport but does not care how this has to operate. However,
(Rescorla 2015a) is a collection of ideas for new handshake flows that can provide the
targeted goals. It also contains possible problems that have to be considered, and builds
the basis for the new negotiation phase of TLS 1.3.
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Figure 12: Full TLS 1.3 handshake (Fussenegger 2015e; Rescorla 2015b, 31).

Only the initial Client- and ServerHello messages from TLS 1.2’s full handshake
will remain in cleartext and their structure stays the same. Additionally, two new cleartext
messages are added on both sides for the same flight, the Client- and ServerKeyShare,
as depicted in figure 12. They contain additional cryptographic parameters for calculation
of the pre-master secret, but which parameters exactly will depend on the cipher chosen
by the server. This means in effect that the client will always send the information before
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it actually knows which cipher the server will choose. This is why it can include multiple
parameters for different ciphers or even send an empty key share if it has not enough
information to include anything.
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Figure 13: Full TLS 1.3 handshake with mismatched parameters (Fussenegger 2015f;
Rescorla 2015b, 32).

The fact that the client may send nothing or unusable parameters forced the authors
to implement a special message: the HelloRetryRequest server message, illustrated in
figure 13. Upon receiving of this message the client has to resend the same ClientHello
and ClientKeyShare messages but extend the content of the latter with the requested
cryptographic parameters. From here on, the flow is the same again for both hand-
shake situations, and the server will answer with its ServerHello and ServerKeyShare
messages.

In the same flight the server can already include various optional but encrypted
messages followed by the mandatory Finished message. The client may also answer with
additional optional messages, but it can directly include encrypted application data after
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the mandatory Finished message. The abbreviated handshake, illustrated in figure 14, as
it is planned now still requires a round-trip for session resumption, but the first application
data may already follow the Finished message of the client in the second flight (Rescorla
2015b, 29–32).
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Figure 14: Abbreviated TLS 1.3 handshake (Fussenegger 2015g; Rescorla 2015b, 33).

The extended encryption of the TLS 1.3 Handshake Protocol counteracts various
privacy leakages that are present in current revisions. For instance, the host to which
a client connects is not visible anymore if Server Name Indication (SNI) is in use. SNI
allows hosting of multiple HTTPS websites with a single IP address and was first defined
in RFC 3546 (Blake-Wilson et al. 2003, 8–10). Other data that might be of interest to
third parties for fingerprinting or reassembling of communication, namely timestamps and
sequence numbers, were either dropped altogether or are encrypted. The shortened phase
also requires the deprecation of previous static RSA and DH in favor of dynamic DHE
and ECDHE algorithms that automatically provide PFS.

Other changes currently included in the draft contain the removal of non-AEAD ciphers,
compression, custom DHE groups, the ChangeCipherSpec protocol and its single message,
and much more. None of these changes are directly targeting performance, and an in-
depth explanation of them can be found in (Rescorla 2015b). Recapitulatory, it can be
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said that the upcoming protocol trims a lot of overhead from the various messages during
the negotiation phase, which in turn minimizes the chances that a packet grows too big
and requires fragmentation. Further, security, privacy, and simplicity are improved, which
should in turn support implementors and researchers during protocol evaluations.

2.6 TLS Extensions and Related Technologies

The following sections will describe important TLS extensions and related technologies
that are essential for the ecosystem of encrypted communication in the Internet.

2.6.1 Session Tickets

Session tickets were first defined in RFC 4507 and updated in RFC 5077. This TLS
extension enables a server to offload a session’s state to the client instead of keeping it
in a local cache, as was described in section 2.5.2 with session resumption. The state is
encrypted and encapsulated in a so called ticket, which the server forwards to the client.
The client can resubmit the ticket to the server at a later point if it wishes to resume the
session. The main advantage of this approach is that a server does not require any kind
of cache management. In theory it also simplifies sharing of session states among multiple
servers and makes scaling of clusters easier.

Only the key that is used to encrypt the encapsulated tickets needs to be shared
among the whole cluster, in contrast to the complete cache. Synchronization of the key
yields its own problems, very similar to the ones described in section 2.4.3, that need to
be solved. The most severe problem, which generally results in the recommendation to
disable session tickets altogether, is the lifetime of the key. PFS can only be guaranteed
if the key is frequently rotated since a compromise of the key would otherwise result in a
compromise of all past communication. An attacker who recorded all encrypted messages
would obviously be able to decrypt them with the appropriate session ticket key.

Frequent rotation is not supported by any major platform, and administrators and
developers are left to implement their own solution if they wish to use session tickets and
provide PFS. The latter being available by default in the upcoming TLS 1.3 specification
if static key exchange algorithms are really dropped in the final revision. A possible open
source solution for session ticket key rotation for nginx is presented in section 3.3 (Ristić
2014, 58–59; Grigorik 2013a, 57; Salowey et al. 2006, 2008).
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2.6.2 HTTP Strict Transport Security

HTTP Strict Transport Security (HSTS) is a mechanism that was introduced to improve
security of websites that are only accessible via secure connections and was defined in
RFC 6797; see listing 9 for an example. The idea is simple: the server includes an HTTP
header that indicates that this domain, and optionally all its subdomains, should always
be visited via the appropriate secured protocol (usually HTTPS). A compliant UA will
convert any request and Uniform Resource Locator (URL) that is not using the secure
protocol to use one. Any certificate errors will yield a hard-fail since requesting of a
non-secured resource is not allowed. This technique mitigates active and passive network
attacks and deployment bugs.

1 Strict-Transport-Security: max-age=262974383; includeSubdomains; preload

Listing 9: HSTS example header with max-age, subdomains, preloading attributes.

Major browsers additionally support HSTS preload lists.37 These lists are hard-coded
into the browser, and hosts found on that list are impossible to access via non-secure
protocols. HSTS can be used to minimize unnecessary HTTP-to-HTTPS redirects and
improve performance because UAs will alway directly access the server via the appropriate
protocol (Ristić 2014, 285–93; Grigorik 2013a, 72; Hodges, Jackson, and Barth 2012).

2.6.3 False Start

False Start is a TLS protocol extension (Langley, Modadugu, and Moeller 2015) that allows
peers to transmit application data together with the ChangeCipherSpec and Finished
messages. This means in effect that the negotiation phase is reduced to a single round-
trip even if the client visits the server for the first time or the previous session has expired.
False Start is available for all TLS revisions since it does not alter the protocol; only the
timing when application data is sent is affected. A client knows the encryption key with
transmission of the ClientKeyExchange message, thus, it can already encrypt application
data. See figure 15 for an illustration of the altered TLS negotiation phase with earlier
transmission of encrypted application data.

Subsequent processing is performed to confirm that the handshake records were not
tampered with, which can be done in parallel. This TLS extension was, once again,
proposed by Google after performing several tests against all SSL/TLS hosts known to
their own search index. Preliminary tests of them showed that False Start can reduce the

37. https://hstspreload.appspot.com/

https://hstspreload.appspot.com/
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Figure 15: TLS False Start handshake (Fussenegger 2015h).
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latency of the negotiation phase by up to 30 % (Belshe 2011). Though, their tests also
revealed that some endpoints—mainly TLS terminators, which are hardware devices that
proxy unencrypted data to backend HTTP servers—fail if application data is sent to early
(Langley 2012).

That is why web browsers will only use False Start if certain requirements are met:

• Chrome and Firefox require Next Protocol Negotiation (NPN) or its successor ALPN
and a cipher suite with the PFS attribute.

• Safari requires a cipher suite with the PFS attribute.
• IE uses a blacklist of known sites that break with False Start, and a timeout to

repeat the handshake if it failed.

Cipher suites with PFS and the announcement of available protocols via the NPN or
ALPN TLS extensions will enable False Start across all browsers. This means in practice
that a web server, like Apache HTTP Server (Apache) or nginx, has to be compiled against
a recent OpenSSL version (1.0.1a or higher) that will automatically enable the necessary
extension, and pair it with a suitable cipher suite selection (Grigorik 2013a, Chapter 4
from the online version; 2013b).

2.6.4 Public Key Infrastructure

Public key infrastructure (PKI) is a system that issues, distributes, and validates digital
certificates. It was already mentioned that TLS does not mandate how the authentication
certificate of a peer should be interpreted. However, the need to validate the authenticity
of a peer is important in order to ensure that two parties who have never met are actually
the ones they claim to be. In the context of the WWW this usually means that the server
should proof that it is a valid origin for the data it provides and not an attacker who is
trying to spoof passwords, for instance.

An IETF working group developed the Internet PKI especially for the WWW and
formalized it in RFC 5280 (Cooper et al. 2008). The model depends on certificate au-
thorities (CAs) that issue certificates for various purposes. A certificate encapsulates an
entity’s public key, various meta information, and is signed with the digital signature of a
CA. The included meta information decides what purpose a certificate may be used for,
including signing of other certificates, documents, emails, or domain names. Each CA has
its own self- or cross-signed certificates, known as root certificates because of the chaining
requirement.

A server certificate should always be signed by an intermediate CA’s digital signature
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and not directly by the CA itself for security, technical, and administrative reasons. The
most important and obvious reason is that a CA’s root key is very important and should
never be compromised; otherwise, all certificates that were ever signed by it would have
to be invalidated. Other reasons include cross-certification, compartmentalization, and
delegation to other organizations. The chaining of certificates often yields confusion, and
some include no chain or the complete chain when a client requests the server’s certificate,
which leads to invalid paths.

A path should always lead to a root certificate, but it should not include it. Including
the root certificate only wastes bandwidth because a system will not trust a CA simply
because its root certificate is part of a chain. The system will trust the CA because it is
part of its own trust store. Such a store is a collection of root certificates that is provided
by the system. Operating systems usually provide such trust stores to installed software,
but any vendor may maintain its own collection, like Mozilla does. Missing intermediate
certificates will result in an error since the system is unable to complete the chain to the
appropriate root certificate.

The validation process starts if a complete chain is present. The system will first
validate the expiration date, as server certificates are usually valid for one to two years,
and if it is not expired continue to ask the CA if the certificate was not revoked. Revocation
usually happens if the owner of a certificate reports that it should be revoked. This could
be the case because of a compromise of the associated public key or simply because it
is not needed any longer. There are currently two standards available for certificate
revocation. The older is known as certificate revocation list (CRL) and is also defined in
RFC 5280, and the newer is called Online Certificate Status Protocol (OCSP) and defined
in RFC 6960.

CRLs are a long list of certificate serial numbers that are revoked but have not expired.
Every CA maintains one or multiple CRLs, and they are made available to systems over
the Internet. The main problem with these lists is that they are often very large, which
makes real-time lookups slow. OCSP was designed to solve that problem by allowing a
system to check the revocation of a single entity. The actual lookup is performed by a so
called OCSP responder, which is operated by the CA and again available over the Internet.
This system introduces new problems in form of poor performance, single points of failure,
and privacy. This can be mitigated with OCSP stapling, which allows the inclusion of an
OCSP response directly in the TLS handshake.

Revocation is still problematic, even with the two systems in use. This is why many
UAs perform a soft- instead of a hard-fail if a OCSP responder is unreachable, which
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means that they treat the certificate as not revoked. Google goes even further and has
disabled revocation checking in their Chrome browser (Ristić 2014, 63–112; Grigorik 2013a,
57–62). There are many more problems with the current Internet PKI system, all of them
related to trust and security, and not to performance (Ristić 2014, 77–78; Cooper et al.
2008; Santesson et al. 2013).

2.6.5 Web Servers

The term web server may refer to a computer that is connected to a network or to a
single software that is responsible for delivering web pages to clients, and processing or
storing instructions sent by them. In this thesis, web server always refers to the software
and server is used to refer to the network connected computer. Web server software
play an integral role because they are responsible for handling all incoming and outgoing
requests, orchestration of the correct system calls at the appropriate time, and much more.
Performance is always directly related to the web servers in use, and many software is
available38 with different approaches to handle all of these requirements.

Apache HTTP Server (Apache) is historically the best known web server software
with the biggest market share. It is implemented in user land—like most web servers

—and features different architectures from which an operator can choose. The older
and mostly deployed architecture is process-based, and tries to reduce latency while
increasing throughput to ensure reliable processing of requests. The second architecture
is a mixture of multiple processes and threads. It was introduced to increase the amount
of simultaneously servable clients, and as an answer to newly emerging event-based web
servers that featured much better performance than Apache did at that time.

Nginx (pronounced “engine x”) is such an event-based web server. It was developed
by Igor Sysoev for Rambler, the biggest Russian search engine, because existing web
servers were not fast enough. The main focus is high concurrency, performance, and low
system resource usage. It utilizes an asynchronous event-driven mechanism to handle
requests for highest throughput, and a highly modular codebase to improve extensibility
and maintainability. It found broad deployment because of its outstanding performance,
and constantly moves upwards in the NetCraft web server survey39 statistics.

38. https://en.wikipedia.org/wiki/Comparison_of_web_server_software
39. http://news.netcraft.com/archives/category/web-server-survey/

https://en.wikipedia.org/wiki/Comparison_of_web_server_software
http://news.netcraft.com/archives/category/web-server-survey/
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2.6.6 Security Libraries

Implementing cryptographic functions and logic is not a trivial task, in fact most security
issues are related to incorrect implementations and bugs. This became particularly evident
with the serious and often discussed Heartbleed vulnerability in OpenSSL. This program-
ming mistake of a single developer enabled anyone to read the memory of a machine
that is connected to the Internet, and possibly steal the private key that is in use. This
circumstance was further aggravated by the fact that OpenSSL is the most used security
library in non-Windows software—like web servers—to implement SSL and TLS (Ristić
2014, 162–63).

Other libraries40 like NSS from Mozilla, GnuTLS from the Free Software Foundation,
SChannel from Microsoft, or the Java Secure Socket Extension (JSSE) exist, but none
of them is a simple drop-in replacement for OpenSSL, and, of course, they are not free
of bugs either. Such drop-ins are important because a lot of big software is hard-coded
against the public OpenSSL API, like Apache and nginx. Altering such implementations
to use a completely new API is often complicated or simply not feasible. This is why other
projects were established after the Heartbleed discovery, namely LibreSSL and BoringSSL
that shall maintain backward compatibility while improving security and performance.

The former is a fork of OpenSSL that was started by various programmers of the
OpenBSD Project, and the latter is a fork of Google. Both have the goal to streamline
the codebase and they exchange modifications with each other. Their efforts also result in
improved performance, although much more would be possible and might be available in
these libraries in the future (Grigorik 2014, time index 5:25 to 6:40). As of now, it seems
as if LibreSSL is doing a better job as a drop-in replacement than BoringSSL, which is
mostly driven by the interest of Google to use it for its own software rather than being a
dedicated library for all kinds of other software, like LibreSSL (Stenberg 2014).

2.7 Previous and Related Work

This section is dedicated to analyzing and discussing previous and related works—both
academic and non-academic—that deal with the same scientific question as this thesis. A
lot of research was conducted on the performance of SSL and TLS since their inception,
and only the most relevant publications that directly deal with performance and not
security were considered. However, there is no claim on completeness.

40. https://en.wikipedia.org/wiki/Comparison_of_TLS_implementations

https://en.wikipedia.org/wiki/Comparison_of_TLS_implementations
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2.7.1 Historic Work

One of the first studies conducted on the performance of SSL was (Goldberg, Buff, and
Schmitt 1998a) that evaluated the impact of session resumption. They concluded that
abbreviated handshakes result in a 15 % to 50 % reduction in the time it takes to establish
a channel. Additionally, they observed that the time for establishment of a new TCP
connection is only slightly lesser than the time it takes to resume an SSL session. The
results of this work are still relevant today, and enabling session resumption for TLS is
the simplest method to speed-up encrypted websites. Modern UAs even wait for the first
negotiation phase to finish before establishing more connections to a host in order to reuse
the session, and to avoid the costs of the full handshake (Grigorik 2013a, 56).

Another publication of the same authors followed a few months later, where they
compared the performance of HTTP and HTTPS in general (Goldberg, Buff, and Schmitt
1998b). This work must be considered historic because of the benchmarked ciphers and
web servers, although the used RC4 algorithm with 40 bit and 128 bit is still in use today
by several websites. The reason is simple: it was promoted as the best mitigation against
the Browser Exploit Against SSL/TLS (BEAST) and Lucky Thirteen attack (Lucky 13),
despite the fact that the stream cipher was already considered problematic for a long time.
RC4 is broken since 2013 and prohibited via RFC 7465 for usage in TLS (Ristić 2014,
197–98, 218–23; Popov 2015). However, the work concludes that encrypted communication
is similar in terms of speed to its unencrypted equivalent with a transfer rate (B/s) drop
between 17 % to 20 %.

TLS 1.0 was released in 1999 and (Apostolopoulos, Peris, and Saha 1999) were the first
to benchmark the new protocol. Their results are again only of historic nature because
of the used ciphers, security libraries, and web servers. Their approach was a traditional
load test, where they measured the number of connections the servers could handle in a
second. Such a benchmark is more meaningful than the transfer rate measurements of
the previous work because it is simpler to compare it with real world deployments that
are not within a controlled laboratory environment. Apostolopoulos et al. conclude that
the impact of encryption is huge with a drop from ∼250 unencrypted requests per second
down to ∼10 without session caching, which is ∼94 % less. Finally, they propose that
some of the computational overhead should be shifted from the server to the client in order
to accelerate the negotiation phase with the argument that the server needs to handle
many more handshakes than the client does.

Another historical work was (Kant, Iyer, and Mohapatra 2000) with special attention
on CPU impact of SSL operations as well as the total throughput of HTTPS transactions.
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They used various hardware configurations and different files while measuring several
characteristics of the CPU (cache, prediction) and the time to first byte (TTFB). The
total drop of the observed TTFBs was ∼85 % during their experiments of encrypted to
unencrypted transactions. Furthermore, they observed that the involved operations are
highly CPU bound and conclude that faster or multiple CPUs have a significant impact
on SSL web server performance.

(Coarfa, Druschel, and Wallach 2002) conducted a comprehensive study of the per-
formance impact on the various processing stages of TLS through removal of relevant
code and insertion of no operation (NOP) instructions. This approach should simulate
a perfect operation that has no overhead, and allowed them to estimate the maximum
expectable improvement for the overall system based on Amdahl’s Law. Apache was the
only tested web server, but they also used RSA accelerators and compared them to CPUs.
The findings of Coarfa et al. showed that such cards are not preferable compared to dual
CPU servers, which often outperformed them, although RSA was the algorithm that was
accountable for the highest relative CPU cost of all involved cryptographic operations.
They also conducted throughput benchmarks, similar to the experiments of (Apostolopou-
los, Peris, and Saha 1999), and saw a drop from ∼1,650 unencrypted requests per second
down to ∼320, which is ∼80 % less. Increasing the CPU speed or count yielded significant
improvements, and they deduced that faster or more CPUs would solve the problem of
cryptography in the future.

(Zhao et al. 2005) conducted an in-depth study of the operations that a web server has
to perform during SSL transactions. This work also illustrates well how long old protocols
and procedures are of interest, even in the scientific field. TLS, the SSL successor, has
already been released for over six years when this work was created purely addressing
the old revision. However, Zhao et al. focused on the time that is spent on the various
cryptographic operations during the negotiation and application phases. They found out
that the majority of total processing time is spent on SSL during HTTPS transactions
with an overhead of 70 %.

The takeaways from these historic works are that SSL and TLS imposed an immense
performance degradation that was almost always highly CPU bound. Especially the
asymmetric cryptography part was costly to compute, which is also the reason why RSA
accelerator cards were often used in benchmarks. Today, such cards are not very common
and CPUs are considerably faster while featuring multiple cores with special built-in
instructions for various cryptographic algorithms.
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2.7.2 Current Work

Many more studies and papers were published, but most of them concentrated on particular
aspects of HTTPS performance, like a single algorithm or how expensive operations could
be off-loaded to the client. Other systems to encrypt the WWW were also proposed; most
notable are Obfuscated TCP (ObsTCP, which was rejected by the IETF in favor of TLS)
and tcpcrypt. The release of SPDY resulted in an increased interest in performance among
researchers, although not particularly in the impact of encryption.

Google was, of course, first to publish benchmarks and announce that SPDY would
improve PLTs by a factor of two (Belshe and Peon 2009). A few years later, another
work followed, where a mobile device was used to load several web pages over HTTPS
and SPDY. This experiment resulted in a PLT improvement for SPDY of 23 %, which is
a factor of 1.3 (Welsh, Greenstein, and Piatek 2012).

A few months later, (Podjarny 2012) published a blog post where he compared HTTP,
HTTPS, and SPDY over a reverse proxy without removing many of the HTTP/1 opti-
mizations that are known to hinder SPDY. The results showed that SPDY is only 4.5 %
faster than HTTPS and 3.4 % slower than HTTP.

Microsoft also published benchmarks between SPDY (with and without encryption),
HTTP, and HTTPS. Their explicitly declared preliminary results show that HTTP and
HTTPS often keep up with SPDY, especially in low RTT environments, and that the
impact of encryption should be further studied in future work (Padhye and Nielsen 2012).

(Servy 2013) conducted server load benchmarks with Apache and again with HTTP,
HTTPS, and SPDY. He used his own commercial load testing tool to perform the bench-
marks with a single domain and a small HTML document that contained fifty to one
hundred small images. This is important to note because such a scenario is best suited
for SPDY. The results show that the server was able to handle many more successful
transactions while using fewer resources with SPDY; HTTPS had the worst performance.

The first academic work was published in 2013 by a researcher team from AT&T Labs.
Their study also focused on the impact of SPDY on mobile networks with special attention
to various short-comings of TCP. HTTP and SPDY showed similar performance in their
tests, and the researcher team concluded that the problems are, on the one hand, the
web pages that are optimized for HTTP/1, and, on the other hand, that TCP is not well
suited for mobile networks (Erman et al. 2013).

It is clear from the varying results that Google attests SPDY better performance
than other parties. This is a circumstance that was also identified by (Wang et al.
2014) who then performed a thorough study with the goal to clarify the situation. They
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captured the PLT of 200 Alexa Internet top sites with and without encryption for both
protocols. Their conclusion is that SPDY only yields an improvement of 7 % over all
tested scenarios, additionally they state that “the overhead of SSL is too small to affect
SPDY’s performance.” (Wang et al. 2014, 398)

2.7.3 The Cost of the “S” in HTTPS

The latest work, which solely focused on the overall performance of TLS, was released
in December 2014—after the decision to write this thesis was made—by a group of eight
researchers with fundings from the European Union: “The Cost of the ‘S’ in HTTPS”.
The first section of the paper is dedicated to the growth of HTTPS traffic in recent years.
The evaluation of (Naylor et al. 2014) is based on log files from a European ISP with
approximately 25,000 users. TStat was used to analyze all requests, which is a software
capable of extracting information from the TLS negotiation phase, and it illustrates how
probably private data leaks through the initial cleartext messages of the protocol are
(Mellia, Carpani, and Lo Cigno 2003). This circumstance will be addressed with the
release of TLS 1.3.

However, the third section of the paper concludes that 50 % of all HTTP transactions
(Naylor et al. observed) are encrypted. This high amount is mainly due to the fact that
most top visited websites like Google Search, Facebook, and YouTube are fully encrypted.
Most interestingly, although only mentioned in a footnote, 55 % of the clients offered
SPDY, but only 5.5 % of the hosts actually supported it (Naylor et al. 2014, 134–35). It
must be mentioned at this point that the presented graphs are not very meaningful and
difficult to interpret, especially the ones presented in subsequent sections. Simpler graphs
would have been supportive to reach a broader audience (UNECE 2009, 17–30).

The next section of “The Cost of the ‘S’ in HTTPS” is split into two subsections: in
the first, the total PLT of the Alexa Internet top 500 websites is investigated, and, in
the second, the costs of the TLS negotiation phase are discussed. The PLT tests were
executed with PhantomJS, a headless web browser based on the Qt WebKit engine with a
scriptable JavaScript (JS) API, on an unspecified Linux OS. Each of the 500 websites was
loaded twenty times without caching via HTTP and HTTPS over two different connections,
which were third generation (3G) mobile and fiber connections, both unspecified. The so
collected data shows that TLS adds extra latency ranging from 500 ms to over 1.2 s for
almost all websites on the mobile connection, and more than 500 ms for 40 % on the fiber
connection.

It is safe to assume that Naylor et al. loaded the homepage of each website, but it
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is unclear how they handled redirects. This is especially important with websites that
are supporting only encrypted traffic with a proper HTTP-to-HTTPS redirect. Such
responses are generally not comparable with the response of a real page. Not only does
the payload differ, the redirect is usually issued from the web server, and no back-end
processing is involved. PhantomJS does not support HSTS and does not have preloading
lists, which means that it will connect to the HTTP website and download the small
payload or follow the redirect. The former would result in faster and the latter in slower
or almost equal PLTs for the HTTP benchmarks.

The remarks of Naylor et al. continue with a comparison of TCP connection reuse
between unencrypted and encrypted transactions. They observe that connection times
incur a significant impact from TLS, and, more interestingly, that many websites use fewer
connections and serve fewer resources if accessed via HTTPS. The evaluation of the TLS
negotiation phase follows for which the researchers extracted one million examples from
one day of the ISP dataset. Furthermore, they extracted five popular services from the
set and revealed a relation between the RTT (geographical distance, see section 2.1.1) and
the time it takes to establish an encrypted channel. While most results are somewhere
in the midfield all services exhibit very long timings for some transactions, which is most
likely due to network congestion (Naylor et al. 2014, 135–36).

Data usage is the subject of the next section of “The Cost of the ‘S’ in HTTPS”, which
is again split into two parts. On the one hand, the average overhead of TLS is determined
through evaluation of the channel usage (transferred data) that results in only 4 % of the
total volume, and, on the other hand, the impact on proxies is evaluated. They provide
different services like caching (ISP savings) or optimizations (user savings). The datasets
of Naylor et al. indicate that ISPs would see a large increase in traffic, while users would
not see a significant change in data consumption (136–37).

The last section that is based on experiments evaluates the impact of encryption on the
energy consumption of mobile devices. Collected data indicated that TLS has almost no
impact, and that proxies deteriorate the consumption. Naylor et al. state that the benefit
the proxy provides outweighs the increased consumption because the proxy rewrites the
requested webm to an mp4 video format that the cellphone is able to decode in hardware,
which it cannot do if the video is requested over an encrypted channel. Evolving web
technologies, like the HTML5 <video> tag, allow UAs to select the format that is best
suited for them. The UAs have to be the solution for such use cases and not proxies.
Relying on third-parties also comes with high risks, especially if the third-party is entirely
opaque to the user (Kravets 2014; Thoma 2014).
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The authors of “The Cost of the ‘S’ in HTTPS” discuss the potential impact of losing
in-network services with emphasis on their positive effects and usages. Malicious or
conscious negative usage either to harm and eavesdrop the users or to increase income
through authorities, criminals, or ISPs is not mentioned (Naylor et al. 2014, 137–38;
Kravets 2014; Thoma 2014). Furthermore, they argue that: “[…] losing the ability to
block tracking cookies hurts privacy, which is one of the goals of using TLS to begin
with.” (Naylor et al. 2014, 138) This is a very common misconception about the goals
of encryption in general, though, TLS 1.3 is actually going to improve privacy (a bit)
(Sniffen 2014).

2.7.4 Ongoing Work

The academic world was and is highly interested in the performance of cryptography, but
work which is benchmarking complete systems is rare and mostly of theoretical nature.
Administrators and developers are much more interested in increasing the performance
of their applications, and hackers and organizations are much more interested in a fully
encrypted WWW. Blog posts, discussion boards, mailing lists, and other documents in
the Internet contain the bulk of the work done within this field of research. This is also
due to the fact that the results are very transient and volatile.

The following is a collection of publications and applications of recent years that try
to collect, summarize, and evaluate TLS. This list completes this section of the thesis
with further interesting material and tools that can help in administrating or developing
(encrypted) web applications:

• “High Performance Browser Networking” (Grigorik 2013a) is a book that contains
a complete chapter on TLS, and also investigates other important aspects of web
applications in terms of performance. It was a major source for this thesis.

• “Is TLS Fast Yet?”41 features a collection of information around TLS, and is a follow-
up to the previously presented book.

• “Bulletproof SSL and TLS” (Ristić 2014) is a book that is not exclusively about
performance, but it features some chapters on the topic, and it contains a very good
high-level introduction and overview of everything involved in the TLS ecosystem.

• “Qualys SSL Labs”42 features multiple interesting projects:

– An online tool to test and grade a web server’s SSL/TLS implementation.

41. https://istlsfastyet.com/
42. https://www.ssllabs.com/

https://istlsfastyet.com/
https://www.ssllabs.com/
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– An online tool to test a UA’s SSL/TLS implementation.
– “SSL Pulse”43 is used to publish implementation surveys of thousands of SSL/

TLS web servers across the WWW.

• “ImperialViolet”44 is Adam Langley’s weblog, where he constantly publishes articles
around TLS and related technologies. He is a senior staff software engineer at Google,
and works on encryption on both the server and client side.

2.8 Benchmarking Approaches

It is obvious that measurements must be carried out to find out how much encryption
affects the performance of web applications. Unencrypted communication must first be
quantified in order to compare it to its encrypted counterpart. In addition, new protocols
and extensions must be considered, which might counteract the speed degradation induced
by encryption. Several approaches to perform these measurements were used by the
authors of the works that were presented in the previous section 2.7. All of them used
valid approaches and combinations are also possible, but each approach comes with its
own difficulties and combinations will add them up.

2.8.1 Performance Tests

Performance tests, as conducted by (Goldberg, Buff, and Schmitt 1998b; Apostolopoulos,
Peris, and Saha 1999; Coarfa, Druschel, and Wallach 2002; Servy 2013; Zhao et al. 2005),
are usually performed “to determine the responsiveness, throughput, reliability, and/or
scalability of a system under a given workload.” (Meier et al. 2007, 15) The results
help to identify bottlenecks, establish baselines, support tuning efforts, or can be used
to determine compliance with requirements. Load and stress tests are subcategories of
performance tests. The former is used to test a system under normal and anticipated
production workloads, and the latter is used to test beyond those workloads. The results
from a stress test are used to determine under which conditions a system will fail and how
it fails (15–16).

Multiple (virtual) clients are created that load one or more URLs while responses and
metrics of the server system are being collected during the execution. This is the general
approach to perform performance tests and it seems fairly simple. In reality it is not
that simple because server systems are very complex and indeterministic, which creates

43. https://www.trustworthyinternet.org/ssl-pulse/
44. https://www.imperialviolet.org/

https://www.trustworthyinternet.org/ssl-pulse/
https://www.imperialviolet.org/
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a close link between the test’s setup and the tested system. Hence, results are not easily
comparable among different hard- and software configurations, and it is complicated to
make a general statement (Nottingham 2011b).

Most load testing tools—like ab45, Apache JMeter46, siege47, httperf48, wrk49, and
so forth50,51—are designed to request a single URL with extremely high concurrency
while collecting or allowing the collection of insightful statistics of the tested system and
to perform meaningful stress tests. However, such an approach is not well suited to
determine the protocol added overhead for complex entities, like web pages with their
closely intertwined dependencies, especially not from a user’s perspective. After all,
protocols like SPDY and HTTP/2 were created to minimize the user experienced latency,
and not to improve a web server’s performance or response time (Grigorik 2012).

Performance testing is also offered by cloud based system, like Blitz52 or Dynatrace53,
and there are combinations of local and cloud based systems, like LoadUI54. These services
generally work in the same manner as the previously discussed programs. Their benefit
is that the hardware for the generation of the virtual users is guaranteed and already
deployed. Another benefit is the immediate generation of meaningful statistics in form of
graphs instead of spreadsheets, like most of the previous programs offer it. A problem that
remains with these services is that the tested server must be accessible via the Internet.

Another solution for performance tests is to record a real web browsers requests
and rerun it several times; examples for such software include NeoLoad55 and WAPT56.
This approach goes beyond the simple “URL hammering” and/or URL randomization of
previous solutions and is meant to reflect real world usage. All third-party services suffer
from one or more of the same problems: proprietary software, black boxes, and very high
costs. Nevertheless, all of these services are viable solutions for companies without the
hardware or expertise to build their own performance tests.

45. http://httpd.apache.org/docs/trunk/en/programs/ab.html
46. http://jmeter.apache.org/
47. https://www.joedog.org/siege-home/
48. http://www.hpl.hp.com/research/linux/httperf/
49. https://github.com/wg/wrk
50. http://tsung.erlang-projects.org/
51. https://nghttp2.org/documentation/h2load.1.html
52. https://www.blitz.io/
53. http://www.dynatrace.com/
54. http://www.loadui.org/
55. http://www.neotys.com/product/overview-neoload.html
56. http://www.loadtestingtool.com/

http://httpd.apache.org/docs/trunk/en/programs/ab.html
http://jmeter.apache.org/
https://www.joedog.org/siege-home/
http://www.hpl.hp.com/research/linux/httperf/
https://github.com/wg/wrk
http://tsung.erlang-projects.org/
https://nghttp2.org/documentation/h2load.1.html
https://www.blitz.io/
http://www.dynatrace.com/
http://www.loadui.org/
http://www.neotys.com/product/overview-neoload.html
http://www.loadtestingtool.com/
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2.8.2 Page Timing Tests

Page timing tests, as conducted by (Goldberg, Buff, and Schmitt 1998a; Kant, Iyer, and
Mohapatra 2000; Coarfa, Druschel, and Wallach 2002; Welsh, Greenstein, and Piatek
2012; Padhye and Nielsen 2012; Erman et al. 2013; Wang et al. 2014; Naylor et al. 2014),
are another possible approach to the problem. Statistics are collected on the client side.
The results are not as closely linked to the setup and system as in the previous approach
because hard- and software are not operating at their limits, as it is the case during
performance tests. Additionally, it is also possible to draw inferences from client side
timing information about the impact of the involved operations on the server side, but
the data does not reveal where the expense exactly occurred.

The results of these tests remain stable, even if hard- and software or versions and
configurations are changed on the server. Measurements on the server side, on the other
hand, might be influenced by such changes. Of course, changes on the client side might
affect the measurements as well. One solution for this problem could be a proxy, like the
BrowserMop Proxy or Fiddler, through which every transaction is tunneled, but proxies
add an additional layer of abstraction and interfere with the results per definition. The
problem with proxies is further aggravated by the fact that web browsers apply an upper
connection limit if they detect them (Duell et al. 2012; Smith 2012, 20; Chan et al. 2010).

Accordingly, it is unavoidable, provided that the communication should not be in-
tervened with, that the web browser collects its own statistics; even if this means that
different versions might log different times. Most web browsers offer the export of timing
data in form of HTTP Archives (HARs) via their developer tools. HARs contain details
of all requests the web browser had to perform in order to render the web page, and
are explained in more detail in section 3.1.3. A service which supports the collection of
statistics in this manner is WebPagetest.57

This software is developed as an open source project, and also offered for local instal-
lation via so called private instances. Agents (computers which execute the web browsers)
are currently only supported on Windows, while Linux support is still experimental and
only available for very few web browsers. It offers the ability to collect extended statistics
and to capture screenshots and videos. The agents are actually rendering the web pages
in contrast to PhantomJS, which was used by (Naylor et al. 2014), and behave exactly
like a real user’s web browser would do.

Actual rendering also results in additional involved subsystems, like graphic cards,
and rendering processes might distort the results further because of reflows and other

57. http://www.webpagetest.org/

http://www.webpagetest.org/
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operations that are all highly indeterministic. Nonetheless, results reflect real world usage,
and testing with different browsers can increase the statistical significance of the collected
results.

2.8.3 Other Approaches

Other approaches include a theoretical examination of one or more of the involved oper-
ations as well as benchmarking isolated subsystems. While these approaches allow the
optimization of parts of the complete system, they do not provide any information of a real
world system. Benchmarking isolated subsystems in particular can be very trivial, while
being extremely linked to the actual system and setup. For instance, to determine how
many Elliptic Curve Diffie–Hellman (ECDH) operations a computer can perform a simple
invocation of openssl speed ecdh is sufficient. After all, it would also be impossible to
answer how encryption actually impacts the performance of web applications.
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3 Results

The results section is dedicated to the presentation of the solution that should answer the
research question of this thesis and the analysis of the collected data. The first section 3.1
sketches an overview of the exact test setup and approach that was used to perform the
timing measurements. Section 3.2, where the collected data is analyzed and presented.
The last section 3.3 contains the presentation of a program that can be used to securely
rotate TLS session ticket keys for the nginx web server.

3.1 Setup

The chosen approach to find out which impact encryption has on web applications are
page timing measurements because they provide the most information about both the
client and server side at the same time. The measurements should provide information
about current technologies that are in use by many web applications. WebPagetest would
be the obvious choice for this task, but the lack of Linux support is a drawback because
TFO is currently not implemented in the Windows kernel, but it is an interesting new
extension that is worth experimenting with. The fact that it was already formally defined
in RFC 7413 allows the assumption that Microsoft will implement the feature in the near
future.

Additionally, the extended features of WebPagetest are not required for the evaluation,
and while varying web browsers would be interesting for the measurements only Chrome
currently offers support for TFO. Furthermore, both Firefox and Chrome use NSS on Linux
for cryptographic operations. The difference should, therefore, be minor. Direct export
of HARs is not offered by Chrome or by any other browser. A simple and automatable
solution that works well in Linux is available in form of the chrome-har-capturer Node.js
command-line interface (CLI) program. It utilizes Chrome’s remote debugging protocol
to load URLs and collect the tracing information.

The setup, therefore, consists of a client running Linux Mint58 with the MATE Desk-
top,59 due to its low resource consumption, and a server running Ubuntu Server60 because
it offers the latest kernel and software; more details can be found in table 4. Installation of
the OSs was done manually; of course, Vagrant61 could have been used, which would either

58. http://www.linuxmint.com/
59. http://www.minted.com/
60. http://www.ubuntu.com/server
61. http://www.vagrantup.com/

http://www.linuxmint.com/
http://www.minted.com/
http://www.ubuntu.com/server
http://www.vagrantup.com/
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already contain the necessary software or automatically start the provisioning. However,
the complete provisioning is automated and the only required installation is git to check
out the repository62 and make on the server to start the provisioning.

Client Server

Distribution Linux Mint Ubuntu Server
Version 17.1 15.04
Desktop MATE —
Architecture 64-bit 64-bit
Kernel 3.13.0-38-gen. 3.19.0-15-gen.

Table 4: Client and server OS overview.

Virtual machines (VMs) are used for both the client and the server in order to run
multiple tests at the same time. One client can only perform tests sequentially because
parallel execution could affect the collected data, like it would happen during a perfor-
mance test. Of course, a virtualized environment has several drawbacks compared to
real hardware, but negative effects should be minor because the hardware is not under
high load. However, the final decision to use VMs was solely based on the time factor.
Many iterations are necessary to gather statistically significant data—at least one hundred
(Meier et al. 2007, 180)—which results in very long execution times. Multiple VMs allow
parallel execution without interferences.

Care must be taken while choosing a desktop OS. For instance, Ubuntu Desktop63

with its Unity environment had various issues with graphics, which might be related to
the Nvidia card of the host system as well, and resource consumption during an initial
test run of this setup. Chrome had to be started with disabled 3D acceleration because it
still had issues even after Ubuntu reported no graphic errors. This was not the case with
Linux Mint. Additionally all visual aids were disabled to minimize the impact of graphic
related issues further.

A fast Microsoft Windows computer is used as host system, and VirtualBox64 as
virtualization software to run the clients and servers. Hardware details of the host can
be found in table 5, and both the client and server VM configurations can be found in
appendix A. Intel’s Core i7-3770K CPU features four real cores plus four virtual cores
via HyperThreading. Two cores with 2 GB of main memory are assigned to each client

62. The complete code currently resides in a private Bitbucket repository and will be moved to GitHub
after the final exam; it is also included on the enclosed volume.

63. http://www.ubuntu.com/desktop
64. https://www.virtualbox.org/

https://bitbucket.org/
https://github.com/fleshgrinder
http://www.ubuntu.com/desktop
https://www.virtualbox.org/
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Component Type Comment

Operating System Windows 7 Professional 64-bit
Motherboard Gigabyte GA-Z77X-D3H
Processor Intel Core i7-3770K
Main Memory 16 GB
Graphics Nvidia GeForce GTX 680
Hard Drive Samsung SSD 830 System

2×WD1001FALS RAID-0 VMs

Table 5: Host system hardware overview.

VM and each server has a single core with 1 GB. The remaining two cores are left to the
host system. Each VM has full access (no execution cap) to the CPU without additional
virtualization layers, which is possible through the Intel VT-x EPT CPU extension.

The server’s system specification was chosen because it reflects common virtual private
server (VPS) setups, and the client was simply assigned twice as much of all resources,
which was kept after verifying that it is enough for the used desktop OS to run smoothly
during the tests. For comparison, the previously mentioned Ubuntu Desktop VM had
access to four cores and 8 GB main memory. CPU usage on the host system was constantly
going up and down between 12 % to 28 %, while main memory usage for all VirtualBox
processes combined was fixed at ∼360 MB; see figure A.3 and figure A.4 for screenshots.

Network adapter two is used to connect a client with its server, network adapter one
is used to connect to the Internet via the host system. An active Internet connection is
only required during the initial provisioning and not for the actual tests, but it was useful
during development.

The provisioning on both the client and server is started via make client-vbox and
make server-vbox respectively. This will compile and install the latest PHP release65

first, and create symbolic links for the main executable followed by the installation of
the VirtualBox Guest Additions, which are required to resolve any compatibility issues.
Provisioning continues after rebooting, which is necessary for full initialization of the
additional VM software with the server.

3.1.1 Server

After the reboot, the command make server needs to be executed on the server. Kernel and
already installed software are upgraded to their latest versions followed by the extraction

65. https://github.com/fleshgrinder/php-compile

https://github.com/fleshgrinder/php-compile/tree/1e3831353ec73ff85440c087f0f071925a269ed2
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of previously collected HARs of web pages that are going to be tested. An MD5 hash is
generated for each web page’s resources based on the path and query of their URLs. The
hash is used as local filename because path and query combinations of many URLs are
extremely long, many hierarchies deep, and contain problematic characters that would
make it very difficult to create or delete these directories and files on a Windows system,
which will be used for the data analysis. There are more reasons why this hashing approach
was chosen but more on this later.

A few problematic HTTP headers are removed from the resources. Starting with the
content length field, which is recomputed by the web server based on the real local size of
the file. Content security policy and reporting headers are removed because they could
block loading of resources or try to send reports to the real website. Public key pins and
associated headers are removed because testing is done with self generated certificates and
the browser would not accept them otherwise. All raw cookie headers are removed, and the
already parsed cookie objects of the HAR are used, instead, because they are easier to work
with in the object oriented program. HSTS headers are removed because HTTP support
is required for later comparison of unencrypted with encrypted transactions. Status is
removed because it is redundant and already available via a dedicated property in the
HAR, which is again used by the backend application. Finally, date and vary are removed,
because they are set by the web server based on the actual response it sends.

Payloads of the resources are either extracted and decoded, if present in the HAR, or
separately downloaded. The loop starts over for all processed resources and their cookies,
headers, and payloads are being prepared for storage by replacing all previously collected
top-level domains (TLDs) with the local TLD. This is necessary to circumvent the HSTS
preloading list of Chrome for certain domains, and it is easier to generate a catch-all zone
file for the DNS, which will be installed after the extraction because it only has to match
the TLD and is entirely domain agnostic.

Four versions of each web page are created: two are HTTP or HTTPS with sharded
domains, and two are HTTP or HTTPS without sharding (they only use the domain of
the web page itself). It would also be possible to create pure protocol-less URLs in all
payloads, but it was found that this approach breaks some JS files. These files can contain
conditions that would be altered and consequently broken by a simple string or regular
expression replace approach. Finally, all resources are stored in a local directory, and the
collected domains are written into a file for further usage in later steps.

The stored resources consist of two or three files. The first is a serialized PHP file
containing an object with the resource’s cookies, headers, redirect URL (if applicable),
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34 location / {
35 # The PHP front controller script will redirect nginx to serve the file.
36 location ~ \.payload$ {
37 internal;
38 try_files $uri =404;
39 }
40

41 # Pass any request to the PHP script and let it determine what is to be returned.
42 include fastcgi.ngx;
43 }

Listing 10: Nginx catch-all location block.

and the HTTP status code. The second file is the payload itself, while the third file
is the compressed payload if the original resource was compressed. Precompressing the
payloads avoids compression during runtime, which would add additional processing time.
All of this abstraction is necessary to create an nginx configuration containing only a
single location block that is reusable for any web page; see listing 10. Nginx forwards the
requests to a PHP script that computes the MD5 hash, deserializes the resource’s meta
information, sets the cookies and HTTP headers, and returns the path to the payload file
back to nginx for delivery.

Script based and purely static web pages are also supported instead of the explained
HAR based extraction process, which is provided for addition of new test cases based
on existing web pages. It is important to note that the creation of a web page’s HAR
is actually not as easy as it might seem, especially if the web page is responsive and/or
contains a lot of dynamic content. The web browser, which is used, might not request
some of those files at this point, for instance a banner which is generated based on the
viewport, but those missing files will result in a 404 error during the test runs. Manual
checking for errors is, therefore, necessary before a new test case can be used.

The DNS server bind9 is installed and configured in the next step. It was explained in
section 2.3.3 that every domain look-up consumes some time, which should be controllable
during the tests as well. This means that the bind9 on the server acts as primary DNS for
the client instead of using the hosts file on the client for the local TLD look-ups, which
would have virtually no impact. Linux OSs do not cache DNS information by default and
require additional packages to do so. Of course, previously mentioned HSTS preloading
reasons apply too but could have been solved via the hosts approach as well. Nginx is
compiled from source to get the latest updates of the experimental SPDY module; see
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1 nginx version: nginx/1.9.0
2 built by gcc 4.9.2 (Ubuntu 4.9.2-10ubuntu13)
3 built with OpenSSL 1.0.2b-dev xx XXX xxxx
4 TLS SNI support enabled
5 configure arguments: ... --with-cc-opt='-O2 -pipe -m64 -march=native'

--with-http_gzip_static_module --with-http_ssl_module --with-http_spdy_module
--with-openssl-opt='-O2 -pipe -m64 -march=native -DOPENSSL_NO_HEARTBEATS
enable-ec_nistp_64_gcc_128' --with-openssl=/usr/local/src/openssl
--with-md5=/usr/local/src/openssl --with-md5-asm
--with-sha1=/usr/local/src/openssl --with-sha1-asm --with-pcre=/usr/local/src/pcre
--with-pcre-jit --with-zlib=/usr/local/src/zlib --without-http_access_module
--without-http_auth_basic_module --without-http_autoindex_module
--without-http_empty_gif_module --without-http_geo_module
--without-http_memcached_module --without-http_proxy_module
--without-http_referer_module --without-http_scgi_module
--without-http_split_clients_module --without-http_ssi_module
--without-http_upstream_ip_hash_module --without-http_userid_module
--without-http_uwsgi_module

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Listing 11: Extended nginx version information with highlighted OpenSSL configuration
flags (irrelevant parts omitted for brevity).

listing 11 for detailed configure flags.66,67

Generation of two CAs with the system’s OpenSSL follows after the configuration of
the network with a fixed IP address: one for ECDSA with a secp384r1 EC plus SHA256
for hashing, and one for RSA with 4,096 bit plus SHA348 for hashing. Furthermore,
two intermediate CAs are created for each root, the ECDSA uses a secp256r1 EC, RSA
2,048 bit, and both use SHA256 for hashing. Root certificates need to be created with
stronger key sizes than other certificates because they are usually very long-lived, which
means up to thirty years. Intermediate certificates are created with best practice values
(Ristić 2014, 248–49, 252–53); see listing 12 for involved commands.

Generation of the nginx server configurations follows because they require the cer-
tificates of the root and intermediate CAs to be in place for the generation of the host
certificates and keys. A server configuration for each web page, protocol, and sharding
type is created. This means that there are ten configurations in total:

1. HTTP with sharding.
2. HTTP without sharding.
3. HTTPS with sharding and ECDSA certificate.
4. HTTPS without sharding and ECDSA certificate.
5. HTTPS with sharding and RSA certificate.

66. https://github.com/fleshgrinder/nginx
67. https://github.com/fleshgrinder/nginx-compile

https://github.com/fleshgrinder/nginx/tree/eab36770eb3cd0728e17f746c138e2412be451f1
https://github.com/fleshgrinder/nginx-compile/tree/288bbed526ac643e5dd3a52684d28502763fd403
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1 # Generate ECDSA CA
2 cd ecdsa/ca
3 mkdir -p certs db private
4 touch db/index
5 openssl rand -hex -out 'db/serial' 16
6 echo 1001 > db/crlnumber
7 openssl rand -out 'private/.rnd' 32768
8 openssl ecparam -genkey -name secp384r1 -out 'private/key'
9 openssl req -out 'csr' -new -rand 'private/.rnd' -key 'private/key' -config 'ca.conf'

-batch↪→

10 openssl ca -config 'ca.conf' -in 'csr' -out 'crt' -selfsign -notext -batch -extensions
ca_ext↪→

11

12 # Generate ECDSA intermediate CA
13 cd ecdsa/sca
14 ...
15 openssl ecparam -genkey -name prime256v1 -out 'private/key' -rand 'private/.rnd'
16 openssl req -out 'csr' -new -rand 'private/.rnd' -key 'private/key' -config 'sca.conf'

-batch↪→

17 openssl ca -config '../ca/ca.conf' -in 'csr' -out 'crt' -notext -batch -extensions
sca_ext↪→

18

19 # Generate RSA CA
20 cd rsa/ca
21 ...
22 openssl req -out 'csr' -new -rand 'private/.rnd' -newkey rsa:4096 -sha384 -keyout

'private/key' -nodes -config 'ca.conf' -batch↪→

23 openssl ca -config 'ca.conf' -in 'csr' -out 'crt' -selfsign -notext -batch -extensions
ca_ext↪→

24

25 # Generate RSA intermediate CA
26 cd rsa/sca
27 ...
28 openssl req -out 'csr' -new -rand 'private/.rnd' -newkey rsa:2048 -sha256 -keyout

'private/key' -nodes -config 'sca.conf' -batch↪→

29 openssl ca -config '../ca/ca.conf' -in 'csr' -out 'crt' -notext -batch -extensions
sca_ext↪→

Listing 12: OpenSSL certificate generation commands. The dots indicate navigation and
the initial repeated commands for the creation of the necessary files. The used
configuration files are available in the repository or in the enclosed volume and
not included in the work because of their length.
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6. HTTPS without sharding and RSA certificate.
7. SPDY with sharding and ECDSA certificate.
8. SPDY without sharding and ECDSA certificate.
9. SPDY with sharding and RSA certificate.

10. SPDY without sharding and RSA certificate.

HTTP/2 is not yet supported by nginx, but the release was announced for the end of
2015 (Garrett 2015). A few alternatives are available, for instance H2O68 and nghttp2,69

but both SPDY and HTTP/2 open only a single TCP connection. This means in effect
that the SPDY results can be conferred to HTTP/2. The keep alive times of 10 s and
TLS settings with the ECDHE-RSA-AES128-GCM-SHA256 and ECDHE-ECDSA-AES128-GCM-
SHA256 cipher combination—which offer PFS for False Start and are the two faster of
four ciphers recommended by RFC 7525 (Sheffer, Holz, and Saint-Andre 2015, 11)—plus
a shared session cache are the same for all configurations; see listing 13 for the relevant
parts of nginx’s main configuration that was used for all tests.

Software Version Origin

bind 1:9.9.5.dfsg-9 Package
nginx 1.9.0 GitHub
nginx’s OpenSSL 1.0.2b-dev GitHub
nginx’s zlib 1.2.8 GitHub
OpenSSL 1.0.1f-1ubuntu11 Package
PHP 5.6.7 GitHub

Table 6: Exact server software version information.

Provisioning of the server is finished with all configurations and services in place. It
will start a remote service that accepts commands from the client, for instance to download
the root certificates. Detailed version information for reference is listed in table 6.

3.1.2 Client

Client provisioning continues with the invocation of make client after the server is ready,
and the necessary reboot for the VM Guest Additions was performed. This will upgrade
all packages and the kernel to the latest version, and continue with the installation
of the current stable Google Chrome followed by the NSS tools. Previously generated
root certificates are imported into the certificate database of the current user with the

68. https://h2o.examp1e.net/
69. https://nghttp2.org/

https://h2o.examp1e.net/
https://nghttp2.org/
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35 aio off; # Does not work properly in VM.
36 etag off;
37 fastcgi_cache_path /tmp/ngx-fastcgi-cache levels=1:2

keys_zone=FASTCGI_CACHE:64m inactive=10m;↪→

38 gzip off;
39 gzip_proxied any;
40 gzip_static on;
41 gzip_vary on;
42 if_modified_since off;
43 ignore_invalid_headers on;
44 msie_padding off;
45 output_buffers 1 512k; # Should match read ahead value.
46 postpone_output 1460;
47 read_ahead 512k; # Should match output buffers.
48 reset_timedout_connection on;
49 sendfile off; # Does not work properly in VM.
50 tcp_nodelay on;
51 tcp_nopush on;
52

53 client_body_timeout 10s;
54 client_header_timeout 10s;
55 keepalive_disable none;
56 keepalive_timeout 10s;
57 lingering_time 10s;
58 lingering_timeout 10s;
59

60 spdy_headers_comp 0; # To slow in such a fast environment.
61 spdy_keepalive_timeout 10s;
62 spdy_recv_timeout 10s;
63

64 ssl_buffer_size 1360;
65 ssl_ciphers ECDHE-RSA-AES128-GCM-SHA256:ECDHE-ECDSA-AES128-GCM-

SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-AES256-GCM-SHA384:DHE-RSA-
AES128-GCM-SHA256:DHE-DSS-AES128-GCM-SHA256:kEDH+AESGCM:ECDHE-RSA-
AES128-SHA256:ECDHE-ECDSA-AES128-SHA256:ECDHE-RSA-AES128-SHA:ECDHE-ECDSA-
AES128-SHA:ECDHE-RSA-AES256-SHA384:ECDHE-ECDSA-AES256-SHA384:ECDHE-RSA-
AES256-SHA:ECDHE-ECDSA-AES256-SHA:DHE-RSA-AES128-SHA256:DHE-RSA-
AES128-SHA:DHE-DSS-AES128-SHA256:DHE-RSA-AES256-SHA256:DHE-DSS-AES256-SHA:DHE-
RSA-AES256-SHA:!aNULL:!eNULL:!EXPORT:!DES:!RC4:!3DES:!MD5:!PSK;

↪→

↪→

↪→

↪→

↪→

↪→

↪→

66 ssl_dhparam dhparam-2048.pem;
67 ssl_ecdh_curve secp384r1; # prime256v1
68 ssl_prefer_server_ciphers on;
69 ssl_protocols TLSv1.2;
70 ssl_session_cache shared:SSL_SESSION_CACHE:64m;
71 ssl_session_tickets off;
72 ssl_session_timeout 10s;
73

Listing 13: Relevant parts of the nginx main configuration.
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NSS tools, which will be used by Chrome to establish trust and validate the provided
certificate chain. Node.js and chrome-har-capturer are installed followed by the network
configuration with a fixed IP address. Provisioning of the client is finished, and the
tests are automatically started for all web pages that reside in the appropriate directory;
detailed version information of the software can be found in table 7.

Software Version Origin

Google Chrome 42.0.2311.135 (64-bit) Package
iproute2 3.16.0-2ubuntu1 Package
libnss3-tools 2:3.17.4-0ubuntu1 Package
PHP 5.6.7 GitHub

Table 7: Exact client software version information.

It was discovered, after the first week of tests70 and during the analysis of the collected
data that chrome-har-capturer (0.4.1, but 0.5.0 does not address the issues) logs incorrect
timing information.71 Listing 14 is a unified diff that illustrates the significant deviation
of the reported timing information compared to a HAR that was manually exported with
Chrome. The program for fully automated tests was already finished, and a transition to
WebPagetest meant more effort than developing a drop-in solution that would export the
HARs via Chrome for the Node.js program.

It was mentioned earlier that Chrome does not offer the ability of a direct HAR export,
but the chrome.devtools.network API for browser extensions offers a method to retrieve
a complete archive. An extension that utilizes this API is only invoked if the developer
tools are opened by a user; there are no CLI flags or any other means provided by Chrome
for this. The Linux automation tool xdotool was used to overcome this hurdle. It waits
for the web browser to start and sends the F12 keyboard shortcut to open the developer
tools, like a real user would do, at which point the extension is being executed, the page
requested, and finally the HAR is downloaded to the local file system. A download is
necessary because an extension is not allowed to access the local file system.

This workaround introduced some minor bugs. For instance, xdotool sometimes sends
the keyboard shortcut before Chrome is fully initialized. Chrome simply ignores the signal
in that case, subsequently the developer tools are not opened and the extension is not
executed. A process timeout was, therefore, defined that terminates Chrome and restarts

70. Which were executed with confidence, since chrome-har-capturer has considerably high usage statis-
tics for such a specialized software and is recommended in forums and mailing lists.

71. Reported issue: https://github.com/cyrus-and/chrome-har-capturer/issues/19

https://github.com/cyrus-and/chrome-har-capturer/issues/19
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1 --- chrome-capturer.har Wed May 27 10:25:13 2015
2 +++ chrome.har Wed May 27 10:25:07 2015
3 @@ -1,21 +1,21 @@
4 ...
5 -"time": 243.0489062498805,
6 +"time": 64.56995010375977,
7 "request": {
8 "method": "GET",
9 "url": "[…]",

10 - "httpVersion": "HTTP/1.1",
11 + "httpVersion": "unknown",
12 ...
13 "response": {
14 "status": 200,
15 "statusText": "OK",
16 - "httpVersion": "HTTP/1.1",
17 + "httpVersion": "unknown",
18 ...
19 "timings": {
20 - "blocked": -1,
21 - "dns": 0.654000000054114,
22 - "connect": 53.30499999990936,
23 - "send": 1.0790000000042994,
24 - "wait": 112.32899999993191,
25 - "receive": 36.00390625,
26 - "ssl": 39.677999999980806
27 + "blocked": 0.974000000041997,
28 + "dns": -1,
29 + "connect": -1,
30 + "send": 0.570000000038813,
31 + "wait": 30.76099999998409,
32 + "receive": 32.264950103694865,
33 + "ssl": -1
34 ...

Listing 14: Unified diff between a HAR entry exported with chrome-har-capturer and
Chrome (diff input was reduced to the relevant parts for brevity).
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the test. Another issue that was found during the analysis is that the exported HARs
are missing the startedDateTime property, which is a prerequisite to recreate the exact
start time of each request at a later point; but the values are actually not required for the
calculations, and their absence is, therefore, not an issue.

Final tests with the new extension were executed with three test cases:

1. The Facebook login page because it is one of the most visited websites of the world
according to the Alexa Internet top sites.

2. A synthetic test of a single HTML document referencing all 256 famfamfam flag
icons plus a sprited version of them.72

3. The most visited Wikipedia article of 2013, which was, like coincidence wants,
Facebook.73

Connection Upload kbit/s Download kbit/s Delay ms
Fast 3G 1,638.4 768 150
DSL 1,536 384 50
Cable 5,120 1,024 28
FTTH 20,480 5,120 4

Table 8: Reference of used connection technologies and their attributes.

A HAR with payloads was exported via Chrome for Facebook and Wikipedia, and
the synthetic test is generated via a script. The tests were conducted as outlined in
listing 15. Connections is an array, where each inner array consists of download and
upload bandwidth as well as the delay. Each connection represents a common network
technology, which are offered by WebPagetest as well, which is the source of the values. An
explanation of the connection values can be found in table 8; the last infinity value means
that no traffic control was applied and the full connection speed of the virtual network was
used. The constraints are applied with the Linux program tc from the iproute2 package.

Each page was loaded twice during a single test run, see line thirty-one to thirty-five
in listing 15. The exact flow for a single test run is very simple. Chrome is started with a
new profile, which means in effect that all caches are empty, connects to the server and
loads the page, the HAR is exported. Opened TCP connections are closed, see listing 16,
and the page is loaded again; no other caches are purged. TFO is only active during the
repeated view, because the web browser must first connect to the server to create the

72. https://github.com/tkrotoff/famfamfam_flags
73. https://tools.wmflabs.org/wikitrends/2013.html

https://github.com/tkrotoff/famfamfam_flags
https://tools.wmflabs.org/wikitrends/2013.html
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1 func benchmark {
2 for each i in [1..2] {
3 for each tfo in (true,false) {
4 for each domain in ("facebook","flags","wikipedia") {
5 for each protocol in ("http","https","spdy") {
6 if protocol is "http" {
7 benchmark-advance()
8 } else {
9 for each algorithm in ("ecdsa","rsa") {

10 benchmark-advance()
11 }
12 }
13 }
14 }
15 }
16 }
17 }
18

19 func benchmark-advance {
20 connections := (
21 (1638.4,768,150),
22 (1536,384,50),
23 (5120,1024,28),
24 (20480,5120,4),
25 INFINITY
26 )
27

28 for each sharded in (true,false) {
29 for each connection in connections {
30 for each i in [1..200] {
31 start-chrome()
32 request-url-and-capture-http-archive() // first view
33 close-connections()
34 request-url-and-capture-http-archive() // repeated view
35 stop-chrome()
36 }
37 }
38 }
39 }

Listing 15: Pseudocode illustrating the test flow with actually used settings.



3 RESULTS 84

cryptographic cookie that is required for future authentication (Cheng et al. 2014, 7–10).

114 cache = true;
115 console.info('First run complete, reloading tab for second

run.');↪→

116 // http://gent.ilcore.com/2011/02/chromes-10-caches.html
117 chrome.benchmarking.closeConnections();
118 console.info('Closed TCP connections for second run.');

Listing 16: Relevant code from the Chrome extension that closes TCP connections between
two page loads.

Two hundred iterations for each test case are necessary to ensure statistical significance
and to compensate errors in any subsystem (Meier et al. 2007, 180). The outermost loop
of two iterations was added to generate a control data set for each benchmark to validate
the collected data from the initial run. Many additional, shorter tests were executed to
find bugs and to try various configurations. All-in-all, almost one hundred gigabytes of
uncompressed data were generated in a period of more than two weeks of pure runtime.

3.1.3 HTTP Archives

HTTP Archive (HAR) is a file format based on JavaScript Object Notation (JSON) that
defines a data structure for logging of web browser request and response tracing information.
The format’s specification is maintained by the Web Performance Work Group of the W3C,
and currently only available as a draft, thus, it is still evolving (Odvarko, Jain, and Davies
2012).74 Native support is offered only by Chrome, but extensions for other web browsers
exist as well as several third-party tools. Most web developers can probably imagine what
a HAR file contains because it is a representation of the network timeline that is available
via the developer tools of every modern web browser (Dyke 2015).

Listing 17 contains a brief overview of the properties that are generally most relevant
for performance evaluations. The pages property contains all captured web pages, and
each page a pageTimings property that contains two total times. Both onContentLoad and
onLoad are representations of their JS event equivalents, hence, both values are arbitrary
web browser specific numbers that cannot be compared or used for calculations because
of the nature of these events (Welsh 2011).

The entries property is an array of all URLs that had to be requested in order to
render the web page, which includes data URIs as well (inline resources: base64 encoded

74. Also available at http://www.softwareishard.com/blog/har-12-spec/ with better formatting and
navigation.

http://www.softwareishard.com/blog/har-12-spec/
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1 {
2 "log": {
3 "version": "1.2",
4 "creater": {...},
5 "browser": {...},
6 "pages": [
7 {
8 ...
9 "title": "http://example.com/",

10 "pageTimings": {
11 "onContentLoad": 1720,
12 "onLoad": 2500
13 }
14 }
15 ],
16 "entries": [
17 {
18 "startedDateTime": "2015-05-27T07:38:41.025Z",
19 ...
20 "time": 50,
21 "request": {...},
22 "response": {...},
23 "cache": {...},
24 "timings": {
25 "blocked": 0,
26 "dns": -1,
27 "connect": 15,
28 "send": 20,
29 "wait": 38,
30 "receive": 12,
31 "ssl": -1,
32 },
33 ...
34 }
35 ]
36 }
37 }

Listing 17: HAR format (several properties omitted for brevity).
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binary data that is referenced within another resource, like in a HTML document). The
provided timings object is the most relevant for this thesis; the following list is taken from
the specification and explains the intend of each of its properties:

• blocked – Time spent in a queue waiting for a network connection.
• dns – DNS resolution time. The time required to resolve a host name.
• connect – Time required to create TCP connection.
• send – Time required to send HTTP request to the server.
• wait – Waiting for a response from the server.
• receive – Time required to read entire response from the server (or cache).
• ssl – Time required for SSL/TLS negotiation. If this field is defined then the

time is also included in the connect field (to ensure backward compatibility with
HAR 1.1).

— (Odvarko, Jain, and Davies 2012)

Each entry in the entries array additionally contains a time property that equals the
sum of all of these timings. It is important to emphasize that the connect time already
contains the ssl time (if applicable) and must be taken care of during all calculations. The
last property to understand is startedDateTime that contains the exact time a request for
an URL started, and is required for the exact recreation of a complete page load; more
about this later. This brief overview of the format is sufficient to understand the upcoming
sections, where reference to the terminology of entries and timings is used. For the sake
of completeness, a HAR contains detailed HTTP headers both in raw and parsed formats.

3.2 Analysis

The collected HARs are aggregated and exported to comma-separated values (CSV) files
because one test run—protocol + key exchange algorithm + sharding + bandwidth-delay
+ first or repeated view—results in two hundred single HARs. This gives two thousand
HARs for a bandwidth-delay group and twenty thousand for a complete benchmark.
Additionally, there is no statistics software available that supports the HAR format, but
conversion is very simple. Each entry corresponds to one line within the CSV; see listing 18
for an extract.75 The analysis of the aggregated CSV files is done with a combination
of IBM SPSS Statistics (SPSS)76 and Highcharts77, supplementing the provisioning and
benchmark program.

75. All CSV files are included on the enclosed volume.
76. http://www-01.ibm.com/software/analytics/spss/products/statistics/
77. http://www.highcharts.com/

http://www-01.ibm.com/software/analytics/spss/products/statistics/
http://www.highcharts.com/
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1 group,id,protocol,algorithm,sharding,iteration,on_content_load,on_load,url,time,
blocked,open,dns,dns_reused,connect,connection_reused,send,wait,receive,
ssl,ssl_reused

↪→

↪→

2 'no-cache',1802,'http','','not-sharded',1,127.14004516602,1104.2101383209,
'http://flags.thesis/',6.3900947570801,0.55599999996048,0,0.5089999995107,0,
0.29500000073313,0,0.07000000005064,3.5849999994753,1.3750947573499,0,0

↪→

↪→

3 'no-cache',1802,'http','','not-sharded',1,127.14004516602,1104.2101383209,
'http://flags.thesis/cx.png',3.4000873565674,0.74099999983446,0,0,1,0,1,
0.090999999883934,1.6169999998965,0.95108735695248,0,0

↪→

↪→

4 'no-cache',1802,'http','','not-sharded',1,127.14004516602,1104.2101383209,
'http://flags.thesis/je.png',3.3500194549561,0.74899999981426,0,0.12700000024779,
0,0.64500000007683,0,0.06899999971211,1.1789999998655,0.58101945523958,0,0

↪→

↪→

Listing 18: Aggregated CSV extract.

3.2.1 Convergence

The first analysis consists of convergence plots of the average and median to determine if
the number of iterations/samples is actually enough (Greenberg 2015, time index 17:45).
One of the aggregated time properties is predestined for this plot, but it was already
mentioned that both pageTimings are not to be trusted. It is not clear what time they
actually represent, and it would make comparison with other browsers complicated or even
impossible. The time property of each entry was, therefore, the best available metric for an
illustration of the convergence. Of course, the value has to be aggregated for all requests
of each entry. Using the median of the aggregated time instead of the average would not
account for the actual time of a complete test run because resources have different sizes.

The receive property’s time is, therefore, always greater for bigger files, thus, the median
would not correctly represent those files. See listing A.1 and listing A.2 for the relevant
SPSS Syntax that was used to load the aggregated CSV files and calculate the average
time of the split data set; see line sixty for the self-explanatory split variables. Further, a
PHP script was used to calculate the average and median of already seen samples while
iteratively going through the file, which created a new CSV file; see listing A.3.

However, anomalies in the data were spotted before the first plot was created. The
time of some entries was negative, even though the specification states that the property
is the “sum of all timings available in the timings object (i.e. not including −1 values)”
(Odvarko, Jain, and Davies 2012, entries), and “send, wait and receive timings are not
optional and must have non-negative values” (timings). In other words, it is impossible
that time is negative. It is unclear why Chrome is logging negative values for these
resources despite the fact that send, wait and receive contain positive numbers. A new
sum has to be calculated based on the other properties; see first line in listing A.1.
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Figure 16: Convergence plots from the first view of the synthetic flags data set.

An investigation of the other properties for illegal values with SPSS revealed that
the onLoad time is sporadically missing from some samples. No more illegal values
were encountered, and the first series of plots could be created after applying the patch.
Figure 16 shows two plots from the synthetic flags data set: the left side shows the
convergence plot for the HTTP tests and the one on the right is SPDY with ECDSA key
exchange, both not sharded. The blue line represents the average time (y-axis) of the
sample from a specific iteration (x-axis), while the black line is the total average, and the
green line is the median of all average times that were plotted so far.

Protocol Algorithm Sharded Minimum (ms) Maximum (ms) Average (ms)

HTTP — No 19.35 51.00 30.01
Yes 30.09 125.99 43.55

HTTPS
ECDSA No 25.60 47.69 34.59

Yes 41.11 72.79 56.88

RSA No 21.09 42.80 30.41
Yes 40.48 73.84 54.62

SPDY
ECDSA No 457.07 853.17 645.91

Yes 366.62 653.33 472.65

RSA No 420.67 700.25 543.59
Yes 306.86 685.01 466.81

Table 9: Detailed timings of the flag data set.

However, the actual convergence is not really interesting in these plots from the first
flags benchmark, it is the y-axis scale from the SPDY result, which is interesting. The
HTTP and HTTPS samples range from 19.35 ms to 125.99 ms, while the SPDY range
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is 420.67 ms to 853.17 ms; see table 9 for detailed report. A circumstance that was only
seen in the synthetic flags test, where over two hundred images were simply embedded in
a document. A closer look at the logged times revealed that the extremely high values,
which are not comparable to any other data set, are the result from a block and send
combination of the HAR’s entries. The problem is that Chrome requests all images at the
same time.

This is best visualized with a comparison: see figure 17, where the left side shows the
timeline of a Window’s Chrome (43.0.2357.81 m 64-bit) requesting the same page from the
same server as before, which is running in the VM. The right side is from the benchmark
VM’s Linux Chrome with a manually exported HAR that contains the startedDateTime.
The HARs that were exported during the benchmarks from the Linux Chrome miss this
property, and it would not be possible to visualize the exact time that a request was
started.

The Windows PLT is 131.738 ms, while the Linux PLT is again extremely high with
655.17 ms; no traffic control is in effect. The problem is that Chrome is requesting more
or less all images at the same time, which is simply too much parallelism for the network.
Whereas the Windows pendant is requesting the images in batches, which is even more
apparent in the bottom of the visualized traces in figure 18 (Chan 2013b, 2013c, 2012).
The flags dataset will, therefore, be omitted from the rest of the analyses.

Plots from the Facebook and Wikipedia data set show that the convergence of both the
average and median is good. The indicator of a good convergence is the stabilization of their
respective lines in the plots. These plots already reveal a lot of other information about the
benchmarks. For instance, a high fluctuation in the timings (blue lines); interestingly, the
RSA plots show less variance than the ECDSA plots. It is also apparent that encryption
has a negative effect on the timings. See figure 19 for all convergence plots of the first
Wikipedia benchmark without bandwidth or delay restrictions.79

78. Created with: http://www.softwareishard.com/har/viewer/
79. All plots are available on the enclosed volume and will be published after the final exam, most likely

as well on GitHub.

http://www.softwareishard.com/har/viewer/
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(a) Windows (b) Linux

Figure 17: Comparison of Windows and Linux loading the synthetic flags test page.78

(a) Windows (b) Linux

Figure 18: Lower end of the requests for the flags test page.78



3 RESULTS 91

Iteration

Ti
m

e 
(m

s)

Wikipedia HTTP
First View

Time Average Median

0 25 50 75 100 125 150 175 200
5

10

15

20

25

30

Iteration

Ti
m

e 
(m

s)

Wikipedia Sharded HTTP
First View

Time Average Median

0 25 50 75 100 125 150 175 200
10

15

20

25

30

35

Iteration

Ti
m

e 
(m

s)

Wikipedia HTTPS (RSA)
First View

Time Average Median

0 25 50 75 100 125 150 175 200
10

20

30

40

50

Iteration
Ti

m
e 

(m
s)

Wikipedia Sharded HTTPS (RSA)
First View

Time Average Median

0 25 50 75 100 125 150 175 200
10

20

30

40

50

Iteration

Ti
m

e 
(m

s)

Wikipedia HTTPS (ECDSA)
First View

Time Average Median

0 25 50 75 100 125 150 175 200
10

20

30

40

Iteration

Ti
m

e 
(m

s)

Wikipedia Sharded HTTPS (ECDSA)
First View

Time Average Median

0 25 50 75 100 125 150 175 200
20

30

40

50

Iteration

Ti
m

e 
(m

s)

Wikipedia SPDY (RSA)
First View

Time Average Median

0 25 50 75 100 125 150 175 200
0

50

100

150

200

Iteration

Ti
m

e 
(m

s)

Wikipedia Sharded SPDY (RSA)
First View

Time Average Median

0 25 50 75 100 125 150 175 200
10

20

30

40

50

60

70

Iteration

Ti
m

e 
(m

s)

Wikipedia SPDY (ECDSA)
First View

Time Average Median

0 25 50 75 100 125 150 175 200
25

50

75

100

125

150

Iteration

Ti
m

e 
(m

s)

Wikipedia Sharded SPDY (ECDSA)
First View

Time Average Median

0 25 50 75 100 125 150 175 200
15

20

25

30

35

40

Figure 19: Convergence plots from first view.
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3.2.2 Outliers

The timings, as seen in the previous plots, contain various peaks, which are most likely
outliers. Usually, they are removed from the collected samples because they are atypical
and infrequent observations that might be due to measuring errors or other anomalies.
They could be easily factored out if a normal distribution is present, which is often the
case in response times (Meier et al. 2007, 179). Another prerequisite is that the number
of samples is statistically significant, which it is in this case with two hundred samples per
benchmark. The last criterion is that the same anomalies are not found in other tests.

Some samples meet all of the prerequisite, while some do not. The collected HTTP
times are mainly normally distributed, while the HTTPS times are slightly inferior but
the SPDY timings are not. The reason could be due to previously observed parallelism
and contention, or bugs in the experimental nginx module.80 See figure 20 for two random
SPDY samples. For the mentioned reasons, no outliers were removed for the analysis since
it is assumed that they correspond to real world problems of available software, even if
they could have been easily removed via z scores (Luko 2011).
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Figure 20: Random sample histograms showing the normal distribution of the timings.

3.2.3 TLS Impact

The data sets have to be aggregated further in order to determine the actual impact of
encryption. Various other analyses were performed on the data sets, for instance descrip-
tives and histogram plots, but discussing everything is beyond the scope of this thesis.

80. For instance: http://trac.nginx.org/nginx/ticket/714

http://trac.nginx.org/nginx/ticket/714
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Additionally, this information is not essential because web developers and administrators
usually do not have a strong background in statistics. However, further aggregation of
the data sets is performed through determination of the median from the time and all its
components (block, dns, connect, send, wait, receive, and ssl) from all samples.

View Protocol Not Sharded (%) Sharded (%)

First
HTTP 90 79
HTTPS 91 80
SPDY 98 97

Repeated TFO
HTTP 90 82
HTTPS 90 83
SPDY 98 96

Table 10: Reuse of DNS information and connections per protocol.

In other words this is the median of the black average line from the convergence plots.
Using the green median line would result in missing out information since the combination
of dns and connect (plus its subcomponent ssl) are reused for many requests; the median
is, therefore, always zero. The actual reuse count depends on the protocol and the question
whether the web page’s resources are sharded or not; see table 10 for the exact percentages
and listing A.4 for the relevant SPSS Syntax. SPDY with its single TCP connection to
each domain exhibits the greatest reuse, as expected. As a consequence, only a single TLS
negotiation phase has to be completed between both peers with SPDY even if no session
caching is active.

The reuse percentages are the same for both key exchange algorithms, and only change
slightly with varying bandwidths and delays. This analysis revealed an error that was
somehow overlooked in all previous tests that were executed for this thesis. The Face-
book data set’s sharded web page loaded substantially less resources than its un-sharded
counterpart. This means that the results from this data set are unusable because it is not
possible to compare the two with each other. Inclusion of the data would most certainly
yield confusion, which is why all plots and tables contain only data from the Wikipedia
data set.

Nonetheless, figure 21 shows a breakdown of the various aggregated timings of the
first view, and figure 22 shows the repeated TFO view of the Wikipedia benchmarks;
relevant SPSS syntax can be found at listing A.5. The plots show stacked charts of all
time components. Most apparent is the low performance of SPDY if sharding is not in
use. This is in strong contrast to the expectation based on its mode of operation. The
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increased times are likely to occur again because the browser requests too many resources
in parallel and induces contention; like it was the case in the flags benchmark. Evidence
supporting this is the substantial surge in the send time (orange areas). Additionally, all
four SPDY areas show more blocked time than the other protocols.

Something that is also apparent in the plots is that the negotiation phase of TLS
occupies a substantial amount of time in the HTTPS samples, is less apparent in SPDY,
and, of course, not part of HTTP at all. The overall percentage that the TLS negotiation
phase requires is easily computed. Of course, the impact of the handshake depends on
the total amount of resources on the page. Only a few, small resources result in a greater
impact because the receive times are very low in contrast to long transactions. Table 11
contains the calculated percentages for the aggregated plots, where SPDY is able to reduce
the impact again by utilizing only a single TCP connection.

Protocol Algorithm Sharded TLS (%)

HTTPS
ECDSA No 3.78

Yes 14.24

RSA No 3.37
Yes 14.17

SPDY
ECDSA No 0.62

Yes 3.29

RSA No 0.42
Yes 3.08

(a) First view.

Protocol Algorithm Sharded TLS (%)

HTTPS
ECDSA No 1.96

Yes 3.48

RSA No 1.85
Yes 3.37

SPDY
ECDSA No 0.03

Yes 0.35

RSA No 0.03
Yes 0.34

(b) Repeated view.

Protocol Algorithm Sharded TLS (%)

HTTPS
ECDSA No 1.67

Yes 3.59

RSA No 1.86
Yes 3.32

SPDY
ECDSA No 0.03

Yes 0.39

RSA No 0.03
Yes 0.38

(c) Repeated TFO view.

Table 11: TLS negotiation phase impact of total time.

These numbers also confirm that the performance of ECDSA cannot reach that of RSA,
but provides better security. Additionally, the smaller certificates should offer more room
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for payload, which is interesting with newer protocols like TLS 1.3 or the TLS False Start
extension. It does not look as if TFO would exert an influence on the negotiation phase,
no matter what the bandwidths and delays were. The aggregated plots provide a good
overview of the overall performance of each protocol and the impact of the TLS negotiation
phase, but this only accounts for the key exchange and asymmetric cryptography. The
total time determines the actual impact of encryption since everything has to be encrypted
before it can be sent.

Consequently, the receive, send, and ssl times need to be compared to the total average
time of all samples, and subsequently subtracted from the same values that were calculated
for HTTP; see table 12 for the results. The un-sharded SPDY results are again complicated
to classify because of the same problems as previously mentioned, but the other numbers
are stable and show a clear result of ∼11.5 % for the actual impact of TLS on the total
time. SPDY is definitely going to lower that value, as can be seen from the sharded
percentages in the table, but this requires that the parallelism and contention, in other
words, its prioritization feature, actually works.

The results of the tests with different bandwidths and delays result in a comparable
percentage for the overhead of TLS, ranging from 5 to 15 % and SPDY always shows
the best results. This concludes the research question of this thesis that was stated as
follows: Does it hold true that new, optimized algorithms and their implementations as
well as faster computers reduce the overhead of encryption to such a great extent that
there is hardly a difference to unencrypted communication? The author comes to the
conclusion that this is actually the case, although implementations have their pitfalls and
proper optimization for best performance is key. The findings and conclusion are further
discussed in section 4.

Of course, these numbers only apply to the actual low-level networking operations
and do not represent the time that the web page actually requires to render. It was
mentioned earlier that the onContentLoad (DOM is ready) and onLoad (page is loaded)
properties of the HAR format are mapped to their JS equivalents, and that their times
are somewhat arbitrary. However, they are the only measure that is available from the
format to determine the PLT. Figure 23 shows a comparison of the ssl, send, and receive
sum lined-up against the aforementioned time properties.
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Protocol Algorithm Sharded TLS (%)

HTTP — No 31.24
Yes 30.46

HTTPS
ECDSA No ∆12.06

Yes ∆21.25

RSA No ∆12.37
Yes ∆20.85

SPDY
ECDSA No ∆9.53

Yes ∆6.69

RSA No ∆10.73
Yes ∆9.49

(a) First view.

Protocol Algorithm Sharded TLS (%)

HTTP — No 28.48
Yes 29.24

HTTPS
ECDSA No ∆11.76

Yes ∆11.73

RSA No ∆12.25
Yes ∆11.58

SPDY
ECDSA No ∆13.44

Yes ∆4.37

RSA No ∆14.50
Yes ∆3.17

(b) Repeated view.

Protocol Algorithm Sharded TLS (%)

HTTP — No 29.41
Yes 29.42

HTTPS
ECDSA No ∆11.23

Yes ∆11.59

RSA No ∆11.12
Yes ∆11.68

SPDY
ECDSA No ∆12.53

Yes ∆5.29

RSA No ∆12.68
Yes ∆5.4

(c) Repeated TFO view.

Table 12: Actual TLS impact of total time. The ∆ denotes that the percentage is the
difference between the real sum of all times subtracted by its HTTP counterpart.
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3.3 Session Ticket Key Rotation

Nginx supports session tickets (see section 2.6.1 for mode of operation) that are switched
on by default, but there are several drawbacks with the current implementation that are
not obvious. A new key for encryption is generated when nginx is started, restarted, or
the configuration is reloaded (Dounin and Fussenegger 2014). Hence, the key is never
rotated if none of these events occurs. Although long lived keys may improve performance,
if paired with very long session timeouts, they effectively destroy PFS (Langley 2013).
This is the reason why some major projects do not recommend using session tickets with
nginx altogether (Dawson 2014).

Nginx developers state that the “current behaviour is believed to be good enough”
(Dounin and Fussenegger 2014), and that frequent rotation should be implemented in
OpenSSL rather than in their code base (Dounin and Gravion 2012). It is important to
mention at this point that the behavior for session tickets is the same in Apache and
many other software. Google’s Go language has built in support for session ticket key
rotation since April 2015.81 RFC 5077 is not describing the management of keys, only
recommendations are provided (Salowey et al. 2008, 10), and the OpenSSL developers
decided to provide a callback82 only and leave the implementation of the actual key
management to the software.

Nginx’s callback implementation is using a hard coded AES-256-CBC cipher with either
SHA1 or SHA256 for hashing; see listing 19 for the relevant code from the nginx 1.9.0
source.83 The result of this is that a ticket’s data might be encrypted with a weaker cipher
than the one used for the TLS channel (Ristić 2014, 58). The common consensus that
128 bit of security are strong enough for symmetric encryption for the next ten to twenty
years, and that a generic web application should favor shorter lengths for performance
reasons, allows the conclusion that the implementation restriction is not a tremendous
problem. Especially, if the consideration that AES-192 and AES-256 might be reducible
to AES-128 or worse is taken into account as well (Biryukov et al. 2010; Biryukov and
Khovratovich 2009; Biryukov, Khovratovich, and Nikolić 2009; Dunkelman, Keller, and
Shamir 2010).

Real attacks are not feasible today, but they will most likely reduce all versions of AES
if they become usable (Bogdanov, Khovratovich, and Rechberger 2011). It is, therefore,
still desirable that web servers provide the ability to swap the used cipher or determine

81. https://go-review.googlesource.com/#/c/9072/
82. https://www.openssl.org/docs/ssl/SSL_CTX_set_tlsext_ticket_key_cb.html
83. src/event/ngx_event_openssl.c#2822

https://go-review.googlesource.com/#/c/9072/
https://www.openssl.org/docs/ssl/SSL_CTX_set_tlsext_ticket_key_cb.html
https://github.com/nginx/nginx/blob/ae88e2338f6e27459ace8a23754afc5892c2c5be/src/event/ngx_event_openssl.c#L2822-L2900
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2821 ...
2822 #ifdef OPENSSL_NO_SHA256
2823 #define ngx_ssl_session_ticket_md EVP_sha1
2824 #else
2825 #define ngx_ssl_session_ticket_md EVP_sha256
2826 #endif
2827

2828 static int
2829 ngx_ssl_session_ticket_key_callback(ngx_ssl_conn_t *ssl_conn,
2830 unsigned char *name, unsigned char *iv, EVP_CIPHER_CTX *ectx,
2831 HMAC_CTX *hctx, int enc)
2832 ...

2863 ...
2864 RAND_pseudo_bytes(iv, 16);
2865 EVP_EncryptInit_ex(ectx, EVP_aes_128_cbc() , NULL, key[0].aes_key, iv);
2866 HMAC_Init_ex(hctx, key[0].hmac_key, 16,
2867 ngx_ssl_session_ticket_md() , NULL);
2868 ...

Listing 19: Nginx 1.9.0 session ticket key callback with highlighted encryption functions
(lines omitted for brevity).

the best suited based on the server’s strongest configured cipher for TLS channels. This
would also allow applications with long term security requirements to utilize this feature.
Still, constant ticket key rotation is far more important because a short lived key allows
to decrypt only a small portion of previous messages if it gets compromised. A key that
is never rotated and then compromised would enable an attacker to decrypt all previous
messages, no matter how strong the key was.

3.3.1 Naive Approach

A simple cron command to reload or restart the web server on predefined intervals for key
regeneration is the minimum that has to be implemented if tickets shall be used together
with PFS, but this naive approach has several drawbacks. Most apparent is that the key is
not sharable in clusters among multiple server instances because it is hidden in a software
without the capability to support such an environment. Of course, this is not a problem
for most websites, which are only hosted on a single server. However, another problem is
that the currently in use key will be lost or overwritten by the newly generated one.

The web server consequently loses the ability to decrypt previously issued tickets
because the server transmits a ticket that was encrypted with key A to the client. The
cron job reloads the server after this request was handled, and a new key B is generated.
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The client requests a new resource from the server—providing the previously received
ticket that was encrypted using A—and the server is unable to decrypt the ticket with B.
Session resumption has to be aborted, and a full TLS handshake is required to establish
a new session.

A security vulnerability that affected older versions of nginx—as well as most other
web servers and many websites like Akamai Technologies’ CDN—was related to shared
session states among multiple virtual servers, affecting both server side state and client
side tickets. The range of possible attacks with the so-called “Virtual Host Confusion”
is large, ranging from impersonating websites to session hijacking (Delignat-Lavaud and
Bhargavan 2014). This issue was addressed with the immediate release of versions 1.6.2
and 1.7.5 (Dounin 2014). Nonetheless, package databases of some widely deployed server
OSs are still offering old versions; Ubuntu, for instance, distributes nginx 1.4.6 for the
long term support (LTS) version of their server branch.

3.3.2 Improved Approach

To overcome these drawbacks a shell script based program was developed that makes use of
the ssl_session_ticket_key directive84 to provide the keys for encryption and decryption of
the session tickets. The decision to create a shell script and not, for instance, a C program
is simply based on the fact that a Portable Operating System Interface (POSIX) compliant
shell script is supported by almost any Unix OS without additional dependencies. The
requirements for the program, based on the preceding considerations, are summarized in
the following list:

1. Generated keys must be:

• Cryptographically secure random.
• Rotated regularly with the time being configurable.
• Stored on volatile memory (Langley 2013).

2. Script must be executed during server boot before nginx starts.
3. Multiple TLS session ticket keys:

• One encryption key.
• Two decryption keys.

4. One key per domain to address “Virtual Host Confusion” for older releases.
5. Possibility of extension for server cluster sharing of the keys, either via a push or

84. http://nginx.org/en/docs/http/ngx_http_ssl_module.html#ssl_session_ticket_key

http://nginx.org/en/docs/http/ngx_http_ssl_module.html#ssl_session_ticket_key
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pull scheme.

Multiple keys are not absolutely necessary as one would also suffice, however, they
allow to advertise longer lifetimes on the tickets. Clients with tickets that were encrypted
with an old key, which the server still possesses, do not have to undergo the full negotiation
phase again. The server can simply issue a newly encrypted ticket with the current key
if the session resumption was successful with the old key. More than one key is also
helpful in cluster environments because web servers can wait before using the new key
for encryption to ensure that every member of the cluster has it. Of course, the servers
can already use it for decryption in case any of the other servers has a differing time and
starts using the new key earlier. (Hoffman-Andrews 2013).

Time

Time

24h

12h decrypt 12h decrypt12h encrypt

Client

Server

Figure 24: TLS session ticket key lifetime. (Fussenegger 2015i).

Figure 24 illustrates the usage of three keys with a twelve hour key rotation scheme
and a thirty-six hour ticket lifetime. A new ticket is issued to the client right before the
first rotation happens. The receiver of the ticket visits the server again after twenty-four
hours and submits its ticket, which was encrypted with a key that was already rotated
twice. The server, which is still in possession of that key, decrypts the ticket with the old
key and issues a new ticket that was encrypted with the current encryption key. Of course,
the server only does that if the resumption of the session was successful. A full handshake
would be necessary if resumption fails, and the submitted ticket would be discarded.

The program that was developed consists of four shell scripts and a make file for
automated de- and installation as well as running the tests. Settings are configured in
config.sh, where the most important variables are the cron masks that define the rotation
scheme. Listing 20 is an excerpt from the default settings that are included in the program.
Keys are rotated every twelve hours, lifetimes of the tickets should be issued with twice
this amount for maximum gain. Nginx is reloaded thirty minutes after the rotation has
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happened, ensuring that the tickets are actually present and were correctly rotated. The
server keeps the keys in its memory until the next server rotation/reload is performed,
and, thus, the rotation of the keys does not affect the running process.

45 # The session ticket keys rotation interval as cron mask.
46 #
47 # Default is 12 hours which means that a key will reside in memory for 36 hours
48 # before it's deleted (three keys are used). You shouldn't go for much more
49 # than 24 hours for the encrypt key.
50 #
51 # The ticket's lifetime should be set to twice the lifetime of the encryption
52 # key.
53 readonly KEY_ROTATION='0 0,12 * * *'
54

55 # The nginx rotation interval as cron mask.
56 #
57 # This should be after the keys have been rotated (see $KEY_ROTATION). Note
58 # that keys are only in-use after nginx has read them. This is very important if
59 # you're syncing the keys within a cluster.
60 readonly SERVER_ROTATION='30 0,12 * * *'
61

62 # Absolute path to the web server system startup program.
63 readonly SERVER_INIT_PATH='/etc/init.d/nginx'
64

65 # The minimum version the server has to have for session ticket keys via files.
66 readonly SERVER_MIN_VERSION='1.5.7'
67

68 # The minimum version the OpenSSL library requires for session ticket support.
69 readonly OPENSSL_MIN_VERSION='0.9.8f'

Listing 20: Nginx session ticket key rotation configuration excerpt.

The installation script install.sh must be invoked with the domains of the virtual hosts
for which the keys will be used. It is possible to simply pass an arbitrary name to the
script if nginx version 1.6.2 or 1.7.5 and higher is used because the previously discussed
vulnerability is not usable anymore in these releases, and a single key set is sufficient for
all virtual hosts. However, installation starts with preliminary checks to ensure that the
user who invoked the script possesses elevated privileges, the server is actually installed,
and meets the minimum version requirement of 1.5.7 because earlier nginx versions do not
have the ssl_session_ticket_key directive, and taking care of not overwriting an existing
installation.

Installation continues, after all checks succeeded and no problems were detected, with
mounting of the file system that is used to store the keys, directly followed by the creation
of a mount point in fstab. This file contains the configuration for file systems that are to
be automatically mounted when the server boots up. Memory to store the keys must be
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volatile, thus, it must lose the stored data immediately if the system loses power. This is
very important to thwart any attempts of key recovery. Linux OSs generally provide two
file systems that are main memory mapped, accomplishing the requirement of volatility in
form of the ramfs and the newer tmpfs. Table 13 contains an overview of the differences
between both file systems.

Feature ramfs tmpfs

Size Limit No Yes
Swap No Yes
Volatile Yes Yes

Table 13: Differences between ramfs and tmpfs.

Servers usually have a swap partition that is required for paging. This makes ramfs
the preferred file system for this program because it will never swap the keys to the hard
disk if the main memory is full. The absence of size limitations could be a problem since
ramfs will continue allocating unfreeable memory if data is written to it, until the system
becomes unresponsive and most likely crashes (Landley 2005). A circumstance that could
be exploited by a malicious user. However, the mounted file system is restricted to the
user and group that is set in the configuration, which defaults to root. The mount process
is also the reason why execution of the script is restricted to users with elevated privileges,
as some involved commands are not executable by normal system users.

Creation of the cron job (listing 21) for key rotation and reloading of the web server is
performed next, directly followed by the generation of the keys (listing 22) for all domains
that were passed to the script. All three keys are generated; the fact that the second
and third key are not usable for decryption does not matter to the web server, but it
would throw an error if the keys referenced in its configuration did not exist. The last
installation step involves the creation of a SysVinit script (listing 23) that is executed
during the boot process to generate new keys because any of the previously generated
keys are lost. The keys have to be generated before the web server starts, otherwise, it
would again throw an error because of the missing files. This is accomplished through a
dependency on the newly created SysVinit script within the web server’s SysVinit script’s
RequiredStart attribute.

The installation of the program is finished, and the only task that has to be performed
is the configuration of nginx. This is not automated and must be performed by the
administrator because web server configurations tend to be comprehensive and highly
customized. Listing 24 contains an example configuration for nginx that would work
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1 0 0,12 * * * sh -- '/path/to/session-ticket-key-rotation/generator.sh' localhost
2 30 0,12 * * * service nginx reload

Listing 21: Cron job example for session ticket key rotation.

1 dd 'if=/dev/random' 'of=/mnt/session_ticket_keys/localhost.X.key' 'bs=1' 'count=48'

Listing 22: Command to generate a session ticket key.

1 #!/bin/sh
2

3 ### BEGIN INIT INFO
4 # Provides: session_ticket_keys
5 # Required-Start: $local_fs $syslog
6 # Required-Stop:
7 # Default-Start: 2 3 4 5
8 # Default-Stop:
9 # Short-Description: Generates random TLS session ticket keys on boot.

10 # Description:
11 # The script will generate random TLS session ticket keys for all servers ...
12 ### END INIT INFO
13

14 sh -- '/path/to/session-ticket-key-rotation/generator.sh' localhost

Listing 23: SysVinit example script for session ticket key rotation.

1 # ...
2 http {
3 # ...
4 server {
5 # ...
6 ssl_session_timeout 36h;
7 ssl_session_ticket_key /mnt/session_ticket_keys/localhost.1.key;
8 ssl_session_ticket_key /mnt/session_ticket_keys/localhost.2.key;
9 ssl_session_ticket_key /mnt/session_ticket_keys/localhost.3.key;

10 # ...
11 }
12 # ...
13 }

Listing 24: Example configuration for session ticket keys in nginx.
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together with the previous code listings and the default mount path for the ticket keys.
The program would work with other web servers as well if they support session ticket keys.
Apache, for instance, offers the SSLSessionTicketKeyFile, but the program was not tested
with it and it is also not clear whether a reload would be sufficient or not.

Only Debian based Linux distributions were tested, but the code follows the POSIX
standard and was tested with the very restrictive dash shell. This should ensure maximum
compatibility with other Unix-like OSs. Support for sharing of the keys within server
clusters is not provided by the program itself, but an implementation of this feature should
be trivial. Servers within the cluster can either connect to the master server and pull the
keys via Secure Shell (SSH) or the master server connects to the slave servers and pushes
the keys via SSH, which is followed by a time-displaced reload. The program itself was
released into the public domain (PD) and published on GitHub.85,86

85. https://github.com/Fleshgrinder/nginx-session-ticket-key-rotation
86. The complete repository is included on the enclosed volume.

https://github.com/Fleshgrinder/nginx-session-ticket-key-rotation
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4 Discussion & Outlook

The impact of TLS on web communication has changed a lot in the last twelve years
since the paper of (Coarfa, Druschel, and Wallach 2002). Results from the tests that
were conducted as part of this thesis show that encryption actually is negligible with its
small impact of ∼11.5 % on low-level networking, and a not worth mentioning impact
on the total PLT. The final numbers are somewhat surprising for SPDY because of its
performance in the synthetic test, where one would expect SPDY to show what it was
designed for. But many things that look sound in theory pose unexpected side effects
in practice; however, this is not an unknown phenomenon but rather not communicated
enough. There is a strong need for prioritization, and web servers should support this
feature to speed up web applications. After all, nginx with its experimental SPDY module
definitely played a role in the measured results.

The most serious problem with the benchmarks were the times that Chrome reported,
and the fact that the web browser is working differently under Linux than it would under
Windows. All benchmarks should be repeated with real hardware and a Windows system
for the client side. This would also allow to use WebPagetest for the benchmarks, and
subsequently to use different browsers and retrieve more reliable timing information. The
approach to measure on the client side is good, but the software used in this thesis to
perform the measurements is not. Developers and the W3C should push the development
of the Navigation and Resource Timing APIs, and web browser vendors should implement
them with an easily accessible interface, including CLI.87,88

Additionally, the benchmarks should be repeated as soon as HTTP/2 is broadly de-
ployed and available in major web servers, like Apache and nginx; the same applies to
TLS 1.3. Web browser support for the new protocol has already landed in Firefox, Chrome,
and others will follow soon. Together with HTTP/2 comes the de facto mandatory re-
quirement for encryption, and a fully encrypted Internet to counteract the NSA and alike,
as well as criminals and malicious users. However, at least as important as these “slogans”
for a free speech and a neutral Internet is the protection of web services, and while (Naylor
et al. 2014) argue that the loss of in-network services is a problem, but in fact the in-
network services sometimes are the problem themselves.

Web developers, administrators, as well as users should be able to control and decide
what they consume, and what their devices are actually doing. This should not be done

87. http://www.w3.org/TR/resource-timing/
88. http://www.w3.org/TR/navigation-timing/

http://www.w3.org/TR/resource-timing/
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by third parties that are opaque to the users and perform various actions without their
knowledge. Only cryptography can provide this freedom, as exemplified by the story of
Edward Snowden. Improving the TLS session ticket rotation program to support more
web servers besides nginx would help to comprehensively implement PFS. The changes
should be trivial, as well as performing tests on more Linux distributions. However, an
implementation in the web server itself would be much better, even if the nginx developers
disagree, though, it could be provided by the security library as well. No matter which
approach is chosen, both are valid and would definitely improve the future of the TLS’s
PFS support. Especially, with the advent of TLS 1.3 that might make PFS mandatory.

I would like to conclude this thesis with a quote of a not personally known mentor of
mine.

TLS has exactly one performance problem: it is not used widely enough.
Everything else can be optimized.

— (Grigorik 2014, Slide 5)
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Glossary
a denotes the message authentication code in equations. 37, 38

Akamai Technologies is one of the largest CDNs worldwide serving, among others,
Facebook’s monthly 1.32 billion users with static resources. 9, 10, 97

Alexa Internet is a subsidiary of Amazon.com Incorporation and offers commercial
web traffic analysis services. The company and their service is best known for
its ranking data and the free online publication of the “Alexa Top Sites”: http:
//www.alexa.com/topsites 11, 63, 64, 82, 139

Amazon.com Incorporation is the largest Internet-based retailer in the United States
with subsidiaries around the world. The company offers various Internet related
services, like Alexa Internet and the Amazon Web Services (AWS), and serves content
to billions of users around the world. 29, 108, 139

b denotes bandwidth in equations. 15

Blink is a web browser rendering engine, which Google forked from WebKit in 2013.
Maintaining their own codebase allowed Google to drop a large amount of code, and
remove the need for several patches that were necessary to use WebKit for their own
web browser Chrome. 141

c denotes the speed of light in equations. 7, 8

Chrome is Google’s freeware web browser, which has an estimated worldwide market
share of over 50 %. 1, 57, 71, 72, 74, 78, 80–82, 84, 87, 89, 139, 141

Cron is a time-based job scheduler software on various Unix-like operating systems to
automate execution of programs, scripts, or commands at fixed times, dates, or
intervals. The name derives from the Greek word chronos for time. 97

Cybercrime (or computer crime) is a collective noun for any crime that involves
modern telecommunication networks to be committed. Examples include cracking,
copyright infringement, child pornography, or drug and weapon sales. 1

dnodal denotes the total nodal delay in equations. 6, 8, 15

dproc denotes the nodal processing delay in equations. 6

dprop denotes the propagation delay in equations. 7, 8

dqueue denotes the queue delay in equations. 6

dtrans denotes the transmission delay in equations. 7

http://www.alexa.com/topsites
http://www.alexa.com/topsites
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f denotes a function in equations. 38

fmac denotes a MAC function in cryptography and equations. 38

fsym denotes a symmetric encryption function in cryptography and equations. 38

Firefox is Mozilla’s free and open source web browser, which has an estimated worldwide
market share of 12 % to 20 %. 1, 57, 71

Git is a distributed revision control and source code management system designed and
developed by Linus Torvalds for the Linux kernel development in 2005. It is the
most widely adopted version control system for software development. 72, 140

GitHub is a git repository hosting service, which offers unlimited repositories for open
source code. The service was launched in April 2008, and has become the largest
code host in the world with over 3.4 million users in 2014. 78, 80, 89, 103

HTTP cookie is sent from a server to the client in form of the Set-Cookie HTTP
header. It can contain arbitrary data plus a few attributes, which are defined in
RFC 6265. Clients decide if they accept cookies or not, with the latter generally
making web browsing complicated. This is why most UAs have them activated by
default. 14

Internet Explorer is Microsoft’s famous web browser and the default for all their OSs.
It had an estimated market shared of 95 % during 2002 and 2003, but will be
discontinued with the release of Windows 10 in favor of a new and modern browser
known as Microsoft Edge (codename “Project Spartan”). 48, 110

K denotes a key space in cryptography and equations. 33, 40

k denotes a key in cryptography and equations. 33, 36–39

kprivate denotes a private key in cryptography and equations. 38, 39

kpublic denotes a public key in cryptography and equations. 38, 39

Kerberos is a distributed authentication service and network protocol for insecure net-
works and defined in RFC 4120. The protocol’s current revision is at 5, the first
public revision was 4. The system uses symmetric cryptography and requires a
trusted third party. It found wide deployment through Microsoft’s Active Directory
directory service. 36, 43

l denotes length measurements in equations. 7

n denotes the refractive index in equations 7, 8
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Nginx (pronounced “engine x”) is an open source web, cache, and reverse proxy server
for various Internet protocols as well as a load balancer. The main focus of the
development is high concurrency, performance and low system resource usage. It
utilizes an asynchronous event-driven mechanism to handle requests for highest
throughput. 14, 54, 57, 59, 60, 71, 75, 76, 78, 95–102

OpenSSL is the de facto standard open source security library for SSL and TLS, and
utilized by most web servers. It features basic general purpose cryptography func-
tions for certificate and key management. Development started in 1995 under the
name SSLeay and was renamed to OpenSSL in 1998. 57, 60, 76–78, 95, 96

PhantomJS is a headless WebKit based web browser with a scriptable JS API. Its main
use cases are functional website tests, web page automation, screen capturing, and
network monitoring via the HAR format. 64, 69

r denotes throughput in equations. The letter t is not used because it may be confused
with time. 7, 9, 10

s denotes distance measurements in equations. The word derives from the Latin word
spatium (space). The letter d is not used because it may be confused with the various
delay variables. 8

Safari is Apple’s default web browser on their OSs. It uses the open source rendering
engine WebKit. 57, 141

Shell Script is a computer program designed to be run by the Unix shell command-line
interpreter written in one of the various shell scripting languages. A portable shell
script that is supposed to run on as many platforms as possible should generally be
written against the default POSIX shell /bin/sh. 98, 99

t denotes time measurements in equations. 9, 17, 18, 25

u denotes user(s)/client(s) in equations. The letter n is not used because it may be
confused with the refractive index. 10, 36

v denotes velocity (speed) measurements in equations. 8

Web Real-Time Communication is a W3C drafted assortment of standards, proto-
cols, and JS APIs, together they enable browsers to provide peer-to-peer audio,
video, and file sharing without plug-ins. 9, 113

WebKit is an open source web browser rendering engine used by Safari and earlier
versions of Chrome. Google forked the WebCore component of WebKit in 2013 and
announced that they will develop their own rendering engine in the future: Blink.
139, 141
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WebSocket refers to the protocol defined in RFC 6455 and the W3C API. It provides
full-duplex, message-oriented streaming of text and binary data between client and
server. The only connection to HTTP is that the initial handshake is performed via
an upgrade request. The standard also introduces two new URI schemes, namely
ws: (unencrypted) and wss: (encrypted). 21

x denotes an arbitrary measurement in equations and the cleartext in cryptography. The
letter n is not used because it may be confused with the refractive index. 9, 17, 25,
27, 33, 38, 142

X.509 is a standard from the ITU-T for the public-key and privilege management in-
frastructure, which describes the formats for certificates, revocation lists, and path
validation algorithms. 43

y see x and denotes the ciphertext in cryptography. 25, 27, 33, 38

95

z see x (not used in cryptography). 95
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Appendices
A Test System

Figure A.1: VirtualBox Client Configuration Overview
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Figure A.2: VirtualBox Server Configuration Overview
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Figure A.3: Host System CPU Usage During Tests

Figure A.4: Host System Memory Usage During Tests
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B Analysis Source Code

45 COMPUTE realTime=blocked + dns + connect + send + wait + receive.
46 EXECUTE.
47

48 DATASET DECLARE DataSetAvgTime.
49 AGGREGATE
50 /OUTFILE="DataSetAvgTime"
51 /BREAK=protocol algorithm sharding iteration
52 /avgRealTime "Average Time"=MEAN(realTime).
53 DATASET ACTIVATE DataSetAvgTime.
54

55 DEFINE !outputdatadirectory ()
56 !path+!folder+"convergence-plot"
57 !ENDDEFINE.
58

59 SPSSINC SPLIT DATASET SPLITVAR=protocol algorithm sharding
60 /OUTPUT DIRECTORY=!outputdatadirectory DELETECONTENTS=NO
61 /OPTIONS NAMES=VALUES.
62

63 SPSSINC PROCESS FILES INPUTDATA=!outputdatadirectory+"\*.sav"
64 SYNTAX=!path+"convergence-plot2csv.sps"
65 OUTPUTDATADIR=!outputdatadirectory
66 VIEWERDIR=!outputdatadirectory
67 CLOSEDATA=YES
68 LOGFILEMODE=OVERWRITE
69 /MACRODEFS ITEMS.

Listing A.1: SPSS Syntax to calculate real time and export groups into separate CSV files.

1 DEFINE !out ()
2 !quote(!concat(!unquote(!eval(!job_datadir)), "\",

!unquote(!eval(!job_datafileroot)), ".csv"))↪→

3 !ENDDEFINE.
4

5 GET FILE="JOB_INPUTFILE".
6 SAVE TRANSLATE OUTFILE=!out
7 /TYPE=CSV
8 /MAP
9 /REPLACE

10 /FIELDNAMES
11 /CELLS=VALUES
12 /DROP=protocol algorithm sharding.

Listing A.2: SPSS Syntax CSV conversion helper for listing A.1.



B ANALYSIS SOURCE CODE 151

1 <?php
2 // ...
3 $sum = 0;
4 $medians = [ ];
5 while ($input->valid()) {
6 $data = $input->fgetcsv();
7 if ($data[0] !== null) {
8 if ($input->key() === 0) {
9 $data = [ "Iteration", "Time", "Average", "Median" ];

10 } else {
11 array_push(
12 $data,
13 $this->average($sum, $input->key(), $data[1]),
14 $this->median($medians, $input->key(), $data[1])
15 );
16 }
17 $output->fputcsv($data);
18 }
19 $input->next();
20 }
21 // ...
22 private function average(&$sum, $count, $sample) {
23 $sum += $sample;
24 return $sum / $count;
25 }
26 // ...
27 private function median(array &$medians, $count, $sample) {
28 $medians[] = $sample;
29 if ($count === 1) {
30 return $sample;
31 }
32 sort($medians, SORT_NUMERIC);
33 $middle = (int) floor($count / 2);
34 $median = $medians[$middle];
35 if ($count % 2 === 0) {
36 $median = ($median + $medians[$middle - 1]) / 2;
37 }
38 return $median;
39 }
40 // ...

Listing A.3: PHP script to create data points for average and median convergence plot
(reformatted and simplified for brevity).
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45 COMPUTE realTime=blocked + dns + connect + send + wait + receive.
46 EXECUTE.
47

48 SORT CASES BY protocol algorithm sharding iteration.
49 SPLIT FILE LAYERED BY protocol algorithm sharding.
50

51 DATASET ACTIVATE DataSet.
52 DATASET DECLARE DataSetReused.
53 AGGREGATE
54 /OUTFILE="DataSetReused"
55 /PRESORTED
56 /BREAK=protocol algorithm sharding
57 /TlsReused=SUM(TlsReused)
58 /AvgTlsReused=MEAN(TlsReused)
59 /MedTlsReused=MEDIAN(TlsReused)
60 /ConnectionReused=SUM(connectionReused)
61 /AvgConnectionReused=MEAN(connectionReused)
62 /MedConnectionReused=MEDIAN(connectionReused)
63 /DnsReused=SUM(DnsReused)
64 /AvgDnsReused=MEAN(DnsReused)
65 /MedDnsReused=MEDIAN(DnsReused)
66 /Entries=N.
67 DATASET ACTIVATE DataSetReused.

Listing A.4: SPSS Syntax to determine the reuse of DNS and connection per protocol, used
for table 10.
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45 COMPUTE realTime=blocked + dns + connect + send + wait + receive.
46 EXECUTE.
47

48 SORT CASES BY protocol algorithm sharding iteration.
49

50 DATASET DECLARE DataSetEntries.
51 AGGREGATE
52 /OUTFILE="DataSetEntries"
53 /PRESORTED
54 /BREAK=protocol algorithm sharding iteration
55 /Time=MEAN(realTime)
56 /Receive=MEAN(receive)
57 /Wait=MEAN(wait)
58 /Send=MEAN(send)
59 /Connect=MEAN(connect)
60 /TLS=MEAN(tls)
61 /DNS=MEAN(dns)
62 /Blocked=MEAN(blocked).
63 DATASET ACTIVATE DataSetEntries.
64

65 COMPUTE Connect=Connect - TLS.
66 EXECUTE.
67

68 STRING dataSet (A64).
69 COMPUTE dataSet = CONCAT(RTRIM(CONCAT(protocol, "-", algorithm), "-"), "-", sharding).
70 EXECUTE.
71

72 DATASET DECLARE DataSetMedEntries.
73 AGGREGATE
74 /OUTFILE="DataSetMedEntries"
75 /BREAK=dataSet
76 /Time=MEDIAN(Time)
77 /Receive=MEDIAN(Receive)
78 /Wait=MEDIAN(Wait)
79 /Send=MEDIAN(Send)
80 /Connect=MEDIAN(Connect)
81 /TLS=MEDIAN(TLS)
82 /DNS=MEDIAN(DNS)
83 /Blocked=MEDIAN(Blocked).
84 DATASET ACTIVATE DataSetMedEntries.
85

86 SAVE TRANSLATE OUTFILE=!path+!folder+"-timing-breakdowns\"+!file+".csv"
87 /TYPE=CSV
88 /MAP
89 /REPLACE
90 /FIELDNAMES
91 /CELLS=VALUES.

Listing A.5: SPSS Syntax to aggregate all timings and create a stack chart as seen in
figure 21.
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45 COMPUTE realTime=blocked + dns + connect + send + wait + receive.
46 EXECUTE.
47

48 FREQUENCIES VARIABLES=realTime /FORMAT=NOTABLE /HISTOGRAM NORMAL /ORDER=ANALYSIS.

Listing A.6: SPSS Syntax for generation of normal distribution histograms.
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C License
This work is licensed under the Creative Commons Attribution-NonCommercial-Share-
Alike 4.0 International License. To view a copy of this license, visit https://creativeco
mmons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866,
Mountain View, CA 94042, USA.

Creative Commons Corporation (“Creative Commons”) is not a law firm and does
not provide legal services or legal advice. Distribution of Creative Commons public
licenses does not create a lawyer-client or other relationship. Creative Commons makes its
licenses and related information available on an “as-is” basis. Creative Commons gives no
warranties regarding its licenses, any material licensed under their terms and conditions,
or any related information. Creative Commons disclaims all liability for damages resulting
from their use to the fullest extent possible.

C.1 Using Creative Commons Public Licenses
Creative Commons public licenses provide a standard set of terms and conditions that
creators and other rights holders may use to share original works of authorship and other
material subject to copyright and certain other rights specified in the public license below.
The following considerations are for informational purposes only, are not exhaustive, and
do not form part of our licenses.

Considerations for licensors: Our public licenses are intended for use by those
authorized to give the public permission to use material in ways otherwise restricted by
copyright and certain other rights. Our licenses are irrevocable. Licensors should read and
understand the terms and conditions of the license they choose before applying it. Licensors
should also secure all rights necessary before applying our licenses so that the public can
reuse the material as expected. Licensors should clearly mark any material not subject to
the license. This includes other CC-licensed material, or material used under an exception
or limitation to copyright. More considerations for licensors: https://wiki.creativecommo
ns.org/Considerations_for_licensors_and_licensees#Considerations_for_licensors.

Considerations for the public: By using one of our public licenses, a licensor grants
the public permission to use the licensed material under specified terms and conditions.
If the licensor’s permission is not necessary for any reason—for example, because of any
applicable exception or limitation to copyright—then that use is not regulated by the
license. Our licenses grant only permissions under copyright and certain other rights that
a licensor has authority to grant. Use of the licensed material may still be restricted for
other reasons, including because others have copyright or other rights in the material. A
licensor may make special requests, such as asking that all changes be marked or described.
Although not required by our licenses, you are encouraged to respect those requests where
reasonable. More considerations for the public: https://wiki.creativecommons.org/Consi
derations_for_licensors_and_licensees#Considerations_for_licensees.

https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensors
https://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensors
https://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensees
https://wiki.creativecommons.org/Considerations_for_licensors_and_licensees#Considerations_for_licensees
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C.2 Legal Code
By exercising the Licensed Rights (defined below), You accept and agree to be bound by the
terms and conditions of this Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International Public License (“Public License”). To the extent this Public License
may be interpreted as a contract, You are granted the Licensed Rights in consideration of
Your acceptance of these terms and conditions, and the Licensor grants You such rights in
consideration of benefits the Licensor receives from making the Licensed Material available
under these terms and conditions.

C.2.1 Definitions

1. Adapted Material means material subject to Copyright and Similar Rights that
is derived from or based upon the Licensed Material and in which the Licensed
Material is translated, altered, arranged, transformed, or otherwise modified in
a manner requiring permission under the Copyright and Similar Rights held by
the Licensor. For purposes of this Public License, where the Licensed Material
is a musical work, performance, or sound recording, Adapted Material is always
produced where the Licensed Material is synced in timed relation with a moving
image.

2. Adapter’s License means the license You apply to Your Copyright and Similar
Rights in Your contributions to Adapted Material in accordance with the terms and
conditions of this Public License.

3. BY-NC-SA Compatible License means a license listed at https://creativecommons.
org/compatiblelicenses, approved by Creative Commons as essentially the equivalent
of this Public License.

4. Copyright and Similar Rights means copyright and/or similar rights closely related
to copyright including, without limitation, performance, broadcast, sound recording,
and Sui Generis Database Rights, without regard to how the rights are labeled or
categorized. For purposes of this Public License, the rights specified in Section C.2.2
2a and item 2b are not Copyright and Similar Rights.

5. Effective Technological Measures means those measures that, in the absence of proper
authority, may not be circumvented under laws fulfilling obligations under Article
11 of the WIPO Copyright Treaty adopted on December 20, 1996, and/or similar
international agreements.

6. Exceptions and Limitations means fair use, fair dealing, and/or any other exception
or limitation to Copyright and Similar Rights that applies to Your use of the Licensed
Material.

7. License Elements means the license attributes listed in the name of a Creative Com-
mons Public License. The License Elements of this Public License are Attribution,
NonCommercial, and ShareAlike.

8. Licensed Material means the artistic or literary work, database, or other material
to which the Licensor applied this Public License.

9. Licensed Rights means the rights granted to You subject to the terms and conditions

https://creativecommons.org/compatiblelicenses
https://creativecommons.org/compatiblelicenses
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of this Public License, which are limited to all Copyright and Similar Rights that
apply to Your use of the Licensed Material and that the Licensor has authority to
license.

10. Licensor means the individual(s) or entity(ies) granting rights under this Public
License.

11. NonCommercial means not primarily intended for or directed towards commercial
advantage or monetary compensation. For purposes of this Public License, the
exchange of the Licensed Material for other material subject to Copyright and
Similar Rights by digital file-sharing or similar means is NonCommercial provided
there is no payment of monetary compensation in connection with the exchange.

12. Share means to provide material to the public by any means or process that requires
permission under the Licensed Rights, such as reproduction, public display, public
performance, distribution, dissemination, communication, or importation, and to
make material available to the public including in ways that members of the public
may access the material from a place and at a time individually chosen by them.

13. Sui Generis Database Rights means rights other than copyright resulting from Di-
rective 96/9/EC of the European Parliament and of the Council of 11 March 1996
on the legal protection of databases, as amended and/or succeeded, as well as other
essentially equivalent rights anywhere in the world.

14. You means the individual or entity exercising the Licensed Rights under this Public
License. Your has a corresponding meaning.

C.2.2 Scope

1. License grant.

(a) Subject to the terms and conditions of this Public License, the Licensor hereby
grants You a worldwide, royalty-free, non-sublicensable, non-exclusive, irrevo-
cable license to exercise the Licensed Rights in the Licensed Material to:

i. reproduce and Share the Licensed Material, in whole or in part, for Non-
Commercial purposes only; and

ii. produce, reproduce, and Share Adapted Material for NonCommercial pur-
poses only.

(b) Exceptions and Limitations. For the avoidance of doubt, where Exceptions and
Limitations apply to Your use, this Public License does not apply, and You do
not need to comply with its terms and conditions.

(c) Term. The term of this Public License is specified in Section C.2.6 item 1.
(d) Media and formats; technical modifications allowed. The Licensor authorizes

You to exercise the Licensed Rights in all media and formats whether now
known or hereafter created, and to make technical modifications necessary to
do so. The Licensor waives and/or agrees not to assert any right or authority
to forbid You from making technical modifications necessary to exercise the
Licensed Rights, including technical modifications necessary to circumvent
Effective Technological Measures. For purposes of this Public License, simply
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making modifications authorized by this Section C.2.2 item 1d never produces
Adapted Material.

(e) Downstream recipients.

i. Offer from the Licensor –Licensed Material. Every recipient of the Licensed
Material automatically receives an offer from the Licensor to exercise the
Licensed Rights under the terms and conditions of this Public License.

ii. Additional offer from the Licensor –Adapted Material. Every recipient
of Adapted Material from You automatically receives an offer from the
Licensor to exercise the Licensed Rights in the Adapted Material under
the conditions of the Adapter’s License You apply.

iii. No downstream restrictions. You may not offer or impose any additional
or different terms or conditions on, or apply any Effective Technological
Measures to, the Licensed Material if doing so restricts exercise of the
Licensed Rights by any recipient of the Licensed Material.

(f) No endorsement. Nothing in this Public License constitutes or may be construed
as permission to assert or imply that You are, or that Your use of the Licensed
Material is, connected with, or sponsored, endorsed, or granted official status
by, the Licensor or others designated to receive attribution as provided in
Section C.2.3 item 1(a)i.

2. Other rights.

(a) Moral rights, such as the right of integrity, are not licensed under this Public
License, nor are publicity, privacy, and/or other similar personality rights;
however, to the extent possible, the Licensor waives and/or agrees not to assert
any such rights held by the Licensor to the limited extent necessary to allow
You to exercise the Licensed Rights, but not otherwise.

(b) Patent and trademark rights are not licensed under this Public License.
(c) To the extent possible, the Licensor waives any right to collect royalties from

You for the exercise of the Licensed Rights, whether directly or through a
collecting society under any voluntary or waivable statutory or compulsory
licensing scheme. In all other cases the Licensor expressly reserves any right to
collect such royalties, including when the Licensed Material is used other than
for NonCommercial purposes.

C.2.3 License Conditions

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

1. Attribution.

(a) If You Share the Licensed Material (including in modified form), You must:

i. retain the following if it is supplied by the Licensor with the Licensed
Material:

A. identification of the creator(s) of the Licensed Material and any others
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designated to receive attribution, in any reasonable manner requested
by the Licensor (including by pseudonym if designated);

B. a copyright notice;
C. a notice that refers to this Public License;
D. a notice that refers to the disclaimer of warranties;
E. a URI or hyperlink to the Licensed Material to the extent reasonably

practicable;

ii. indicate if You modified the Licensed Material and retain an indication of
any previous modifications; and

iii. indicate the Licensed Material is licensed under this Public License, and
include the text of, or the URI or hyperlink to, this Public License.

(b) You may satisfy the conditions in Section C.2.3 item 1a in any reasonable
manner based on the medium, means, and context in which You Share the
Licensed Material. For example, it may be reasonable to satisfy the conditions
by providing a URI or hyperlink to a resource that includes the required
information.

(c) If requested by the Licensor, You must remove any of the information required
by Section C.2.3 item 1(a)i to the extent reasonably practicable.

2. ShareAlike.
In addition to the conditions in Section C.2.3 item 1, if You Share Adapted Material
You produce, the following conditions also apply.

(a) The Adapter’s License You apply must be a Creative Commons license with
the same License Elements, this version or later, or a BY-NC-SA Compatible
License.

(b) You must include the text of, or the URI or hyperlink to, the Adapter’s License
You apply. You may satisfy this condition in any reasonable manner based on
the medium, means, and context in which You Share Adapted Material.

(c) You may not offer or impose any additional or different terms or conditions
on, or apply any Effective Technological Measures to, Adapted Material that
restrict exercise of the rights granted under the Adapter’s License You apply.

C.2.4 Sui Generis Database Rights

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use
of the Licensed Material:

1. for the avoidance of doubt, Section C.2.2 item 1a grants You the right to extract,
reuse, reproduce, and Share all or a substantial portion of the contents of the
database for NonCommercial purposes only;

2. if You include all or a substantial portion of the database contents in a database in
which You have Sui Generis Database Rights, then the database in which You have
Sui Generis Database Rights (but not its individual contents) is Adapted Material,
including for purposes of Section C.2.3 item 2; and
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3. You must comply with the conditions in Section C.2.3 item 1 if You Share all or a
substantial portion of the contents of the database.

For the avoidance of doubt, this Section C.2.4 supplements and does not replace Your
obligations under this Public License where the Licensed Rights include other Copyright
and Similar Rights.

C.2.5 Disclaimer of Warranties and Limitation of Liability

1. Unless otherwise separately undertaken by the Licensor, to the extent possible, the
Licensor offers the Licensed Material as-is and as-available, and makes no represen-
tations or warranties of any kind concerning the Licensed Material, whether express,
implied, statutory, or other. This includes, without limitation, warranties of title,
merchantability, fitness for a particular purpose, non-infringement, absence of latent
or other defects, accuracy, or the presence or absence of errors, whether or not
known or discoverable. Where disclaimers of warranties are not allowed in full or
in part, this disclaimer may not apply to You.

2. To the extent possible, in no event will the Licensor be liable to You on any legal theory
(including, without limitation, negligence) or otherwise for any direct, special, indirect,
incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or
damages arising out of this Public License or use of the Licensed Material, even
if the Licensor has been advised of the possibility of such losses, costs, expenses,
or damages. Where a limitation of liability is not allowed in full or in part, this
limitation may not apply to You.

3. The disclaimer of warranties and limitation of liability provided above shall be
interpreted in a manner that, to the extent possible, most closely approximates an
absolute disclaimer and waiver of all liability.

C.2.6 Term and Termination

1. This Public License applies for the term of the Copyright and Similar Rights licensed
here. However, if You fail to comply with this Public License, then Your rights under
this Public License terminate automatically.

2. Where Your right to use the Licensed Material has terminated under Section C.2.6
item 1, it reinstates:

(a) automatically as of the date the violation is cured, provided it is cured within
30 days of Your discovery of the violation; or

(b) upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section B.2.6 item 2 does not affect any right the
Licensor may have to seek remedies for Your violations of this Public License.

3. For the avoidance of doubt, the Licensor may also offer the Licensed Material under
separate terms or conditions or stop distributing the Licensed Material at any time;
however, doing so will not terminate this Public License.
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4. Sections C.2.1, C.2.5, C.2.6, C.2.7, and C.2.8 survive termination of this Public
License.

C.2.7 Other Terms and Conditions

1. The Licensor shall not be bound by any additional or different terms or conditions
communicated by You unless expressly agreed.

2. Any arrangements, understandings, or agreements regarding the Licensed Material
not stated herein are separate from and independent of the terms and conditions of
this Public License.

C.2.8 Interpretation

1. For the avoidance of doubt, this Public License does not, and shall not be interpreted
to, reduce, limit, restrict, or impose conditions on any use of the Licensed Material
that could lawfully be made without permission under this Public License.

2. To the extent possible, if any provision of this Public License is deemed unenforceable,
it shall be automatically reformed to the minimum extent necessary to make it
enforceable. If the provision cannot be reformed, it shall be severed from this Public
License without affecting the enforceability of the remaining terms and conditions.

3. No term or condition of this Public License will be waived and no failure to comply
consented to unless expressly agreed to by the Licensor.

4. Nothing in this Public License constitutes or may be interpreted as a limitation
upon, or waiver of, any privileges and immunities that apply to the Licensor or You,
including from the legal processes of any jurisdiction or authority.

C.3 Creative Commons Notice
Creative Commons is not a party to its public licenses. Notwithstanding, Creative Com-
mons may elect to apply one of its public licenses to material it publishes and in those
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